Variance of a Quadratic Form
Setup: Consider the quadratic form \(Q = \varepsilon^T A \varepsilon\) where:
- \(\varepsilon_i\) are i.i.d. with \(\mathbb{E}[\varepsilon_i] = 0\), \(\mathbb{E}[\varepsilon_i^2] = \sigma^2\), \(\mathbb{E}[\varepsilon_i^4] = \mu_4\)
- \(A\) is a symmetric \(n \times n\) matrix (\(A^T = A\))
Computing the Expectation: \[\mathbb{E}[Q] = \mathbb{E}\left[\sum_{i,j} A_{ij}\varepsilon_i\varepsilon_j\right] = \sum_{i,j} A_{ij}\mathbb{E}[\varepsilon_i\varepsilon_j] = \sigma^2 \sum_i A_{ii} = \sigma^2 \text{tr}(A)\]
Computing the Second Moment: \[Q^2 = \left(\sum_{i,j} A_{ij}\varepsilon_i\varepsilon_j\right)^2 = \sum_{i,j,k,\ell} A_{ij}A_{k\ell}\varepsilon_i\varepsilon_j\varepsilon_k\varepsilon_\ell\]
Taking expectation: \[\mathbb{E}[Q^2] = \sum_{i,j,k,\ell} A_{ij}A_{k\ell}\mathbb{E}[\varepsilon_i\varepsilon_j\varepsilon_k\varepsilon_\ell]\]
Fourth Moment Structure: For i.i.d. \(\varepsilon_i\) with mean zero: \[\mathbb{E}[\varepsilon_i\varepsilon_j\varepsilon_k\varepsilon_\ell] = \begin{cases} \mu_4 & \text{if } i = j = k = \ell \\ \sigma^4 & \text{if two pairs of equal indices} \\ 0 & \text{otherwise} \end{cases}\]
Computing Each Contribution:
All indices equal \((i = j = k = \ell)\): \[\mu_4 \sum_i A_{ii}^2\]
Pattern \((i = j \neq k = \ell)\): \[\sigma^4 \sum_{i \neq k} A_{ii}A_{kk} = \sigma^4[\text{tr}(A)^2 - \sum_i A_{ii}^2]\]
Pattern \((i = k \neq j = \ell)\): \[\sigma^4 \sum_{i,j} A_{ij}^2 = \sigma^4 \text{tr}(A^2)\]
Pattern \((i = \ell \neq j = k)\): Since \(A\) is symmetric: \(A_{ij} = A_{ji}\) \[\sigma^4 \sum_{i,j} A_{ij}A_{ji} = \sigma^4 \sum_{i,j} A_{ij}^2 = \sigma^4 \text{tr}(A^2)\]
Final Formula for Second Moment: \[\mathbb{E}[Q^2] = \mu_4 \sum_i A_{ii}^2 + \sigma^4[\text{tr}(A)^2 - \sum_i A_{ii}^2] + 2\sigma^4 \text{tr}(A^2)\]
Rearranging: \[\mathbb{E}[Q^2] = \sigma^4[\text{tr}(A)^2 + 2\text{tr}(A^2)] + (\mu_4 - 3\sigma^4)\sum_i A_{ii}^2\]
Variance of Q: \[\mathbb{V}(Q) = \mathbb{E}[Q^2] - [\mathbb{E}[Q]]^2 = \mathbb{E}[Q^2] - \sigma^4[\text{tr}(A)]^2\]
\[\mathbb{V}(Q) = 2\sigma^4 \text{tr}(A^2) + (\mu_4 - 3\sigma^4)\sum_i A_{ii}^2\]
Special Cases:
Gaussian errors (\(\mu_4 = 3\sigma^4\)): \[\mathbb{V}(Q) = 2\sigma^4 \text{tr}(A^2)\]
Idempotent matrix (\(A^2 = A\)): \[\mathbb{V}(Q) = 2\sigma^4 \text{tr}(A) + (\mu_4 - 3\sigma^4)\sum_i A_{ii}^2\]
Projection matrix (idempotent with \(A_{ii} \in [0,1]\)): \[\sum_i A_{ii}^2 \leq \sum_i A_{ii} = \text{tr}(A)\] Therefore: \[\mathbb{V}(Q) \leq 2\sigma^4 \text{tr}(A) + |\mu_4 - 3\sigma^4|\text{tr}(A)\]