Main Results
Theorem
If \(\tfrac{1}{\lambda} \leq n \leq d\), there exists a poly. time method \(\hat x\) achieving \(\mathcal R^*_{\mathrm{reco}}\) up to polylog factors, i.e. for all \(M\in[0,1]^{n\times d}\), \(\pi^*\) and \(x^* \in \{-1,1\}^d\), \[ \max_{M,\pi^*, x^*}{\mathbb E}[\|M \mathrm{diag}(x^* \neq \hat x)\|_F^2] \lesssim \mathcal R^*_{\mathrm{reco}}(n,d,\lambda) \enspace . \]
Moreover, up to polylogs,
\[ \mathcal R^*_{\mathrm{reco}}(n,d,\lambda) \asymp \frac{d}{\lambda} \enspace . \]