Introduction to Ranking

Ranking the Rows of a Permuted Isotonic Matrix in Noise

Emmanuel Pilliat – ENSAI

Presented at SODA24 [https://arxiv.org/abs/2310.01133], Joint work with

Alexandra Carpentier – Uni Potsdam, Germany Nicolas Verzelen – INRAE Montpellier, France

Crowdsourcing data

Tournaments

Introduction to Ranking

Crowdsourcing data

► Correctness of answer for pairs of expert/questions

Tournaments

Introduction to Ranking

•00000000000000

Crowdsourcing data

► Correctness of answer for pairs of expert/questions

CIFAR10H Dataset

Tournaments

Contributions and Algo

Crowdsourcing data

Correctness of answer for pairs of expert/questions

CIFAR10H Dataset

Tournaments

► Pairwise comparison between players

Crowdsourcing data

► Correctness of answer for pairs of expert/questions

CIFAR10H Dataset

Tournaments

► Pairwise comparison between players

Sports and video games e.g. [Cattelan et al., 2013]

General Question

Introduction to Ranking

00000000000000

Given the correctness of answer from n experts to d questions.

► How accurately can we recover the ranking of the experts?

Contributions and Algo $_{00000}$

Illustration

9 questions

Contributions and Algo

1: Correct answer 0: Wrong answer

00000000000000

Introduction to Ranking

9 questions

 $4 \text{ experts} \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$

1: Correct answer 0: Wrong answer

Good Experts

Bad Experts

00000000000000

Introduction to Ranking

9 questions

 $4 \text{ experts} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$

1: Correct answer 0: Wrong answer

Good Experts

Bad Experts

00000000000000

Introduction to Ranking

9 questions

 $4 \text{ experts} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$

1: Correct answer 0: Wrong answer

Good Experts Bad Experts

Goal: Ranking of Experts

1: Correct 0: Wrong

Contributions and Algo

1: Correct 0: Wrong

Contributions and Algo

$$\Leftrightarrow Y_{ik} = 1$$

1: Correct 0: Wrong

$$\Leftrightarrow Y_{ik} = 1$$

Experts $i \in \{1, \ldots, n\}$

1: Correct 0: Wrong

$$\Leftrightarrow Y_{ik} = 1$$

Experts
$$i \in \{1, ..., n\}$$

Questions $k \in \{1, ..., d\}$

1: Correct 0: Wrong

Contributions and Algo

$$\Leftrightarrow Y_{ik} = 1$$

Introduction to Ranking

Experts $i \in \{1, \ldots, n\}$ Questions $k \in \{1, \ldots, d\}$ We observe for all i, k:

$$Y_{ik} \sim \text{Bern}(M_{ik})$$

1: Correct 0: Wrong

$$\Leftrightarrow Y_{ik} = 1$$

Experts $i \in \{1, \ldots, n\}$ Questions $k \in \{1, \ldots, d\}$ We observe for all i, k:

$$Y_{ik} \sim \mathrm{Bern}\left(M_{ik}\right)$$

 $M_{ik} = 1/2$: random choice of expert i at question k

1: Correct 0: Wrong

Contributions and Algo

$$\Leftrightarrow Y_{ik} = 1$$

Experts $i \in \{1, \ldots, n\}$ Questions $k \in \{1, \ldots, d\}$ We observe for all i, k:

$$Y_{ik} \sim \mathrm{Bern}\left(M_{ik}\right)$$

- $M_{ik} = 1/2$: random choice of expert i at question k
- $ightharpoonup M_{ik} = 1$: Expert i knows perfectly the answer of question k

1: Correct 0: Wrong

Contributions and Algo

$$\Leftrightarrow Y_{ik} = 1$$

Experts $i \in \{1, \ldots, n\}$ Questions $k \in \{1, \ldots, d\}$ We observe for all i, k:

$$Y_{ik} \sim \mathrm{Bern}\left(M_{ik}\right)$$

- $M_{ik} = 1/2$: random choice of expert i at question k
- $ightharpoonup M_{ik} = 1$: Expert i knows perfectly the answer of question k

1: Correct 0: Wrong

Contributions and Algo

expert i is correct at question k

$$\Leftrightarrow Y_{ik} = 1$$

We will often assume that n = d

Pairwise Comparison Setting in Tournaments

Introduction to Ranking

Pairwise Comparison Setting in Tournaments.

Player $i \in \{1, \ldots, n\}$ Player $k \in \{1, \ldots, n\}$ We observe for all i, k:

Introduction to Ranking

$$Y_{ik} = 1 - Y_{ki} \sim \mathrm{Bern}\left(M_{ik}\right)$$

1: Wins 0: Loses

$$\left(\begin{array}{ccc}
\times & 1 & 1 \\
0 & \times & 0 \\
0 & 1 & \times
\end{array}\right)$$

3 players

Player i wins against player k

$$\Leftrightarrow Y_{ik} = 1$$

Contributions and Algo

Observation Model

$$Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0, 1]^{n \times d}$$

Introduction to Ranking

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

► Independent observations

Contributions and Algo

Observation Model

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

- ► Independent observations
- \triangleright Poisson(λ) observations per entry (i, k)

Introduction to Ranking

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

- ► Independent observations
- \triangleright Poisson(λ) observations per entry (i, k)
- $\lambda \leq 1$: partial observations
- \triangleright For simplicity, we assume that $\lambda = 1$

Introduction to Ranking

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

- ► Independent observations
- \triangleright Poisson(λ) observations per entry (i,k)
- $\lambda \leq 1$: partial observations
- \triangleright For simplicity, we assume that $\lambda = 1$

Isotonic Model: [Flammarion et al., 2019]

 \exists unknown permutation π^* :

 M_{π^*} is isotonic

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

- ► Independent observations
- \triangleright Poisson(λ) observations per entry (i, k)
- $\lambda \leq 1$: partial observations
- \triangleright For simplicity, we assume that $\lambda = 1$

Isotonic Model: [Flammarion et al., 2019]

 \exists unknown permutation π^* :

 M_{π^*} is isotonic

$$M_{\pi^*} = \begin{pmatrix} 0.9 & 0.8 & 0.9 & 1\\ 0.8 & 0.7 & 0.9 & 0.8\\ 0.6 & 0.7 & 0.7 & 0.6\\ 0.5 & 0.7 & 0.5 & 0.6 \end{pmatrix}$$

Contributions and Algo

Introduction to Ranking

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

- ► Independent observations
- \triangleright Poisson(λ) observations per entry (i, k)
- $\lambda \leq 1$: partial observations
- \triangleright For simplicity, we assume that $\lambda = 1$

Isotonic Model: [Flammarion et al., 2019]

 \exists unknown permutation π^* :

 M_{π^*} is isotonic

$$M_{\pi^*} = \begin{pmatrix} 0.9 & 0.8 & 0.9 & 1\\ 0.8 & 0.7 & 0.9 & 0.8\\ 0.6 & 0.7 & 0.7 & 0.6\\ 0.5 & 0.7 & 0.5 & 0.6 \end{pmatrix}$$

Introduction to Ranking

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

- ► Independent observations
- \triangleright Poisson(λ) observations per entry (i, k)
- $\lambda \leq 1$: partial observations
- \triangleright For simplicity, we assume that $\lambda = 1$

Isotonic Model: [Flammarion et al., 2019]

 \exists unknown permutation π^* :

$$M_{\pi^*}$$
 is isotonic

$$M = \begin{pmatrix} 0.6 & 0.7 & 0.7 & 0.6 \\ 0.8 & 0.7 & 0.9 & 0.8 \\ \hline 0.5 & 0.7 & 0.5 & 0.6 \\ 0.9 & 0.8 & 0.9 & 1 \end{pmatrix}$$

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

- ► Independent observations
- \triangleright Poisson(λ) observations per entry (i, k)
- $\lambda \leq 1$: partial observations
- \triangleright For simplicity, we assume that $\lambda = 1$

Isotonic Model: [Flammarion et al., 2019]

 \exists unknown permutation π^* :

$$M_{\pi^*}$$
 is isotonic

▶ Goal: recover π^* , the ranking of the experts/rows

$$M = \begin{pmatrix} 0.6 & 0.7 & 0.7 & 0.6 \\ 0.8 & 0.7 & 0.9 & 0.8 \\ \hline 0.5 & 0.7 & 0.5 & 0.6 \\ 0.9 & 0.8 & 0.9 & 1 \end{pmatrix}$$

Contributions and Algo

Contributions and Algo

Isotonic model

Observation Model

 $Y_{ik} = Bern(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape constraints:

Isotonic model

Introduction to Ranking

Observation Model

 $Y_{ik} = Bern(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape constraints:

Matrix M_{π^*} . (isotonic)

Isotonic model

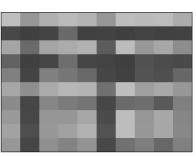
Introduction to Ranking

Observation Model

 $Y_{ik} = Bern(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape constraints:



Matrix M (isotonic up to a permutation of rows)

Isotonic model

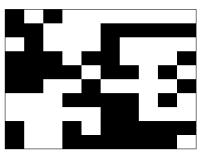
Introduction to Ranking

Observation Model

 $Y_{ik} = Bern(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape constraints:



Matrix Y (M in noise)

Observation Model

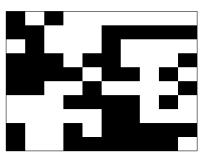
 $Y_{ik} = Bern(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape constraints:

► Increasing Columns for an unknown permutation π^*

Estimation of π^*

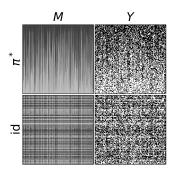


Contributions and Algo

Matrix Y (M in noise)

Contributions and Algo

Introduction to Ranking



Parametric Models

Introduction to Ranking

0000000000000000

Parametric Models

- ▶ BTL: $M_{ik} = \phi(a_i b_k)$ ~[Bradley and Terry, 1952]
 - \triangleright a_i : abilities of the experts
 - \triangleright b_k : difficulties of the questions

Introduction to Ranking

Parametric Models

- ▶ BTL: $M_{ik} = \phi(a_i b_k)$ ~[Bradley and Terry, 1952]
 - \triangleright a_i : abilities of the experts
 - \triangleright b_k : difficulties of the questions

- lack Isotonic: M_{π^*} is isotonic
- ▶ Bi-Isotonic: $M_{\pi^*n^*}$ is bi-isotonic
 - ~[Shah et al., 2016],[Mao et al., 2018],[Liu and Moitra, 2020]

Introduction to Ranking

Parametric Models

- ► BTL: $M_{ik} = \phi(a_i b_k)$ ~[Bradley and Terry, 1952]
 - \triangleright a_i : abilities of the experts
 - \triangleright b_k : difficulties of the questions

- lack Isotonic: M_{π^*} is isotonic
- ▶ Bi-Isotonic: $M_{\pi^*n^*}$ is bi-isotonic ~[Shah et al., 2016],[Mao et al., 2018],[Liu and Moitra, 2020]
 - The rows are increasing up to an unknown permutation η^*

Introduction to Ranking

Parametric Models

- ► BTL: $M_{ik} = \phi(a_i b_k)$ ~[Bradley and Terry, 1952]
 - \triangleright a_i : abilities of the experts
 - \triangleright b_k : difficulties of the questions

- lack Isotonic: M_{π^*} is isotonic
- ▶ Bi-Isotonic: $M_{\pi^*n^*}$ is bi-isotonic \sim [Shah et al., 2016],[Mao et al., 2018],[Liu and Moitra, 2020]
 - The rows are increasing up to an unknown permutation η^*

Introduction to Ranking

Parametric Models

- ► BTL: $M_{ik} = \phi(a_i b_k)$ ~[Bradley and Terry, 1952]
 - \triangleright a_i : abilities of the experts
 - \triangleright b_k : difficulties of the questions

- ► Isotonic: M_{π^*} is isotonic
- ▶ Bi-Isotonic: $M_{\pi^*n^*}$ is bi-isotonic ~[Shah et al., 2016],[Mao et al., 2018],[Liu and Moitra, 2020]
 - The rows are increasing up to an unknown permutation η^*

Contributions and Algo

Isotonic Model

Observation Model

 $Y_{ik} = Bern(M_{ik})$

- ► Independent obs.
- Poisson(1) obs. per entry (i, k)

Shape Constraints:

► Increasing Columns for an unknown permutation π^*

Observation Model

 $Y_{ik} = Bern(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape Constraints:

► Increasing Columns for an unknown permutation π^*

Error Measures

Contributions and Algo

Observation Model

$$Y_{ik} = Bern(M_{ik})$$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape Constraints:

► Increasing Columns for an unknown permutation π^*

Error Measures

Permutation Loss

For an estimator $\hat{\pi}$ of π^*

Contributions and Algo

$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

$$||A||_F^2 = \sum_{i,k} A_{ik}^2$$

Observation Model

 $Y_{ik} = \operatorname{Bern}(M_{ik})$

- ► Independent obs.
- Poisson(1) obs. per entry (i, k)

Shape Constraints:

► Increasing Columns for an unknown permutation π^*

Error Measures

Permutation Loss

For an estimator $\hat{\pi}$ of π^*

$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

$$||A||_F^2 = \sum_{i,k} A_{ik}^2$$

$$\frac{1}{2} + \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & h & h & h \end{pmatrix}$$

If the two lines are misclassified:

$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2 = 6h^2$$

Introduction to Ranking

Observation Model

 $Y_{ik} = \operatorname{Bern}(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape Constraints:

► Increasing Columns for an unknown permutation π^*

Error Measures

Permutation Loss

For an estimator $\hat{\pi}$ of π^*

$$||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

Reconstruction Loss

For an estimator M of M

$$\|\hat{M} - M\|_F^2$$

Observation Model

 $Y_{ik} = \operatorname{Bern}(M_{ik})$

- ► Independent obs.
- Poisson(1) obs. per entry (i, k)

Shape Constraints:

Increasing Columns for an unknown permutation π*

Error Measures

Permutation Risk

For an estimator $\hat{\pi}$ of π^*

$$\mathbb{E}||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

Reconstruction Risk

For an estimator \hat{M} of M

$$\mathbb{E}\|\hat{M} - M\|_F^2$$

Observation Model

 $Y_{ik} = \operatorname{Bern}(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape Constraints:

► Increasing Columns for an unknown permutation π^*

Error Measures

Permutation Risk

For an estimator $\hat{\pi}$ of π^*

Contributions and Algo

$$\mathbb{E}||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

Reconstruction Risk

For an estimator M of M

$$\mathbb{E}\|\hat{M} - M\|_F^2$$

Aim

Estimation of π^*

Observation Model

 $Y_{ik} = Bern(M_{ik})$

- ► Independent obs.
- \triangleright Poisson(1) obs. per entry (i, k)

Shape Constraints:

► Increasing Columns for an unknown permutation π^*

Error Measures

Permutation Risk

For an estimator $\hat{\pi}$ of π^*

Contributions and Algo

$$\mathbb{E}||M_{\hat{\pi}} - M_{\pi^*}||_F^2$$

Reconstruction Risk

For an estimator M of M

$$\mathbb{E}\|\hat{M} - M\|_F^2$$

Aim

Estimation of π^*

Contributions and Algo $_{00000}$

Max Risks

Introduction to Ranking

Permuation Estimation:

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}}(n,d) = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

0000000000000000

Introduction to Ranking

Permuation Estimation:

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}}(n,d) = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Supremum over all isotonic matrices $M_{\pi^*} \in [0,1]^{n \times d}$

00000000000000000

Introduction to Ranking

Permuation Estimation:

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}}(n,d) = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

- ▶ Supremum over all isotonic matrices $M_{\pi^*} \in [0,1]^{n \times d}$
- $\triangleright \mathcal{R}_{\text{perm}}^{\hat{\pi}}(n,d,\lambda)$ when partial observations

Introduction to Ranking

Permuation Estimation:

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}}(n,d) = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}_{\text{reco}}^{\hat{M}}(n,d) = \sup_{M,\pi^*} \mathbb{E}[\|\hat{M} - M\|_F^2]$$

- ▶ Supremum over all isotonic matrices $M_{\pi^*} \in [0,1]^{n \times d}$
- $\triangleright \mathcal{R}_{\text{perm}}^{\hat{\pi}}(n,d,\lambda)$ when partial observations

Minimax Risks

Introduction to Ranking

0000000000000000

Permuation Estimation:

- ▶ Supremum over all isotonic matrices $M_{\pi^*} \in [0,1]^{n \times d}$
- $\triangleright \mathcal{R}_{perm}^{\hat{\pi}}(n,d,\lambda)$ when partial observations

Minimax Risks

Introduction to Ranking

0000000000000000

Permuation Estimation:

$$\mathcal{R}^*_{\mathrm{perm}}(n,d) =$$

$$\mathcal{R}^*_{\text{reco}}(n,d) =$$

- ▶ Supremum over all isotonic matrices $M_{\pi^*} \in [0,1]^{n \times d}$
- $\triangleright \mathcal{R}_{perm}^{\hat{\pi}}(n,d,\lambda)$ when partial observations

Minimax Risks

Introduction to Ranking

Permuation Estimation:

$$\mathcal{R}^*_{\text{perm}}(n,d) = \inf_{\hat{\pi}} \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}_{\text{reco}}^*(n,d) = \inf_{\hat{M}} \sup_{M,\pi^*} \mathbb{E}[\|\hat{M} - M\|_F^2]$$

- ▶ Supremum over all isotonic matrices $M_{\pi^*} \in [0,1]^{n \times d}$
- $\triangleright \mathcal{R}_{\text{perm}}^{\hat{\pi}}(n,d,\lambda)$ when partial observations

Permuation Estimation:

$$\mathcal{R}^*_{\text{perm}}(n,d) = \inf_{\hat{\pi}} \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}_{\text{reco}}^*(n,d) = \inf_{\hat{M}} \sup_{M,\pi^*} \mathbb{E}[\|\hat{M} - M\|_F^2]$$

Introduction to Ranking

0000000000000000

Permuation Estimation:

$$\mathcal{R}^*_{\text{perm}}(n,d) = \inf_{\hat{\pi}} \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Matrix Reconstruction:

$$\mathcal{R}_{\text{reco}}^*(n,d) = \inf_{\hat{M}} \sup_{M,\pi^*} \mathbb{E}[\|\hat{M} - M\|_F^2]$$

▶ Is there a computational-statistical gap?

Introduction to Ranking

0000000000000000

Permuation Estimation:

$$\mathcal{R}_{\text{perm}}^*(n,d) = \inf_{\hat{\pi}} \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}_{\text{reco}}^*(n,d) = \inf_{\hat{M}} \sup_{M,\pi^*} \mathbb{E}[\|\hat{M} - M\|_F^2]$$

- ► Is there a computational-statistical gap?
- leading π^* easier than reconstructing M?

Introduction to Ranking

0000000000000000

Permuation Estimation:

$$\mathcal{R}^*_{\text{perm}}(n,d) = \inf_{\hat{\pi}} \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}_{\text{reco}}^*(n,d) = \inf_{\hat{M}} \sup_{M,\pi^*} \mathbb{E}[\|\hat{M} - M\|_F^2]$$

- ▶ Is there a computational-statistical gap?
- leading π^* easier than reconstructing M? $(\mathcal{R}_{\text{perm}}^* \ll \mathcal{R}_{\text{reco}}^*?)$

Short Story

Introduction to Ranking

Parametric Models

Short Story

Introduction to Ranking

000000000000000

Parametric Models

▶ BTL: $M_{ik} = \phi(a_i - b_k)$

Non-Parametric Models

► No computational gap for parametric models

e.g. [Chen et al., 2022]

Short Story

Parametric Models

ightharpoonup BTL: $M_{ik} = \phi(a_i - b_k)$

Non-Parametric Models

- lack Isotonic: M_{π^*} isotonic
- ▶ Bi-Isotonic: $M_{\pi^*n^*}$ bi-isotonic

► No computational gap for parametric models

Contributions and Algo

- e.g. [Chen et al., 2022]
- ► Mostly unknown for non-parametric models: computational gaps were conjectured

e.g. [Flammarion et al., 2019, Mao et al., 2018]

Overview

Introduction to Ranking

Overview

► There is no significant computational gap

Introduction to Ranking

000000000000000

Overview

- ► There is no significant computational gap
- Much easier to estimate π^* than M in many regimes

Introduction to Ranking

000000000000000

Overview

- ► There is no significant computational gap
- \blacktriangleright Much easier to estimate π^* than M in many regimes

Corollary for the bi-isotonic model ($M_{\pi^*n^*}$ bi-isotonic):

Introduction to Ranking

0000000000000000

Overview

- ► There is no significant computational gap
- \blacktriangleright Much easier to estimate π^* than M in many regimes

Corollary for the bi-isotonic model $(M_{\pi^*\eta^*}$ bi-isotonic):

▶ Poly. time algo achieves better rates than state of the art [Mao et al., 2018, Liu and Moitra, 2020]

Contributions and Algo $_{00000}$

Existing Methods

Existing Methods

► Simple Global Average Comparison

Existing Methods

- ► Simple Global Average Comparison
- ► Least-Square

Existing Methods

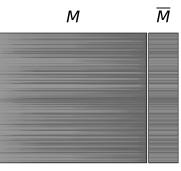
Introduction to Ranking

- ► Simple Global Average Comparison
- ► Least-Square
- ▶ Poly. Time Methods only in the Bi-isotonic Model

Existing Methods

- ► Simple Global Average Comparison
- ► Least-Square
- ▶ Poly. Time Methods only in the Bi-isotonic Model

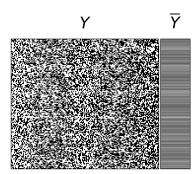
Introduction to Ranking



Matrix M

► Rank according to the averages:

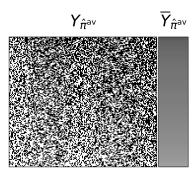
$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$



Matrix Y (M in noise).

► Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

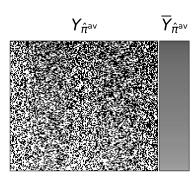


Matrix $Y_{\hat{\pi}^{av}}$ (M in noise).

► Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup\nolimits_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$



Matrix $Y_{\hat{\pi}^{av}}$ (M in noise).

Introduction to Ranking

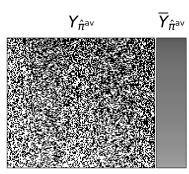
Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}^{av}$ [Shah et al., 2016]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}^{\mathrm{av}}}(n,n) \in [\log^c(n)n^{3/2}, \log^C(n)n^{3/2}]$$



Matrix $Y_{\hat{\pi}^{av}}$ (M in noise).

Introduction to Ranking

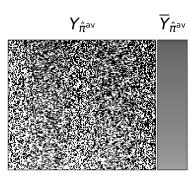
Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup\nolimits_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}^{av}$ [Shah et al., 2016]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}^{\mathrm{av}}}(n,n) \asymp n^{3/2}$$



Matrix $Y_{\hat{\pi}^{av}}$ (M in noise).

Introduction to Ranking

Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}^{av}$ [Shah et al., 2016]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}^{\mathrm{av}}}(n,n) \simeq n^{3/2}$$

Lower Bound for Two Rows

Contributions and Algo

Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}^{av}$ [Shah et al., 2016]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}^{\mathrm{av}}}(n,n) \simeq n^{3/2}$$

Lower Bound for Two Rows

Contributions and Algo

$$M_{1,\cdot} = (\frac{1}{2} \dots \frac{1}{2} \underbrace{\frac{1}{2} \dots \frac{1}{2}})$$

$$M_{2,\cdot} = (\frac{1}{2} \dots \frac{1}{2} \underbrace{1 \dots 1}_{\sim \sqrt{d}})$$

Introduction to Ranking

Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}^{av}$ [Shah et al., 2016]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}^{\mathrm{av}}}(n,n) \asymp n^{3/2}$$

Lower Bound for Two Rows

$$M_{1,\cdot} = (\frac{1}{2} \dots \frac{1}{2} \underbrace{\frac{1}{2} \dots \frac{1}{2}}_{2})$$

$$M_{2,\cdot} = (\frac{1}{2} \dots \frac{1}{2} \underbrace{1 \dots 1}_{2})$$

1 and 2 are likely to be inversed by π^{av}

Introduction to Ranking

Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}^{av}$ [Shah et al., 2016]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}^{\mathrm{av}}}(n,n) \asymp n^{3/2}$$

Lower Bound for Two Rows

$$M_{1,\cdot} = (\frac{1}{2} \dots \frac{1}{2} \underbrace{\frac{1}{2} \dots \frac{1}{2}})$$

 $M_{2,\cdot} = (\frac{1}{2} \dots \frac{1}{2} \underbrace{1 \dots 1})$

- ▶ 1 and 2 are likely to be inversed by π^{av}
- $\|M_1 M_2 \|_F^2 \simeq \sqrt{d}$

► Rank according to the averages:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}^{av}$ [Shah et al., 2016]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}^{\mathrm{av}}}(n,n) \asymp n^{3/2}$$

Lower Bound for Two Rows

$$M_{1,\cdot} = (\frac{1}{2} \dots \frac{1}{2} \underbrace{\frac{1}{2} \dots \frac{1}{2}}_{2})$$

 $M_{2,\cdot} = (\frac{1}{2} \dots \frac{1}{2} \underbrace{1 \dots 1}_{2})$

- ▶ 1 and 2 are likely to be inversed by π^{av}
- $||M_{1,\cdot} M_{2,\cdot}||_F^2 \simeq \sqrt{d}$
- $ightharpoonup \mathcal{R}_{\mathrm{perm}}^{\hat{\pi}^{\mathrm{av}}} \gtrsim n\sqrt{d}$

Existing Methods

Introduction to Ranking

- ► Simple Global Average Comparison
- ► Least-Square
- ▶ Poly. Time Methods only in the Bi-isotonic Model

Least-Square [Flammarion et al., 2019]

Brute-Force all n! permutations π until $Y_{\pi^{-1}}$ is close to an isotonic matrix:

Least-Square |Flammarion et al., 2019|

Brute-Force all n! permutations π until $Y_{\pi^{-1}}$ is close to an isotonic matrix:

$$\hat{\pi} = \underset{\pi}{\operatorname{arg\,min}} \ d_{\operatorname{iso}}(Y_{\pi^{-1}}) \ ,$$

 $d_{\rm iso}$: distance to isotonic matrices in Frobenius norm.

Least-Square |Flammarion et al., 2019|

Introduction to Ranking

Brute-Force all n! permutations π until $Y_{\pi^{-1}}$ is close to an isotonic matrix:

$$\hat{\pi} = \underset{\pi}{\operatorname{arg\,min}} \ d_{\operatorname{iso}}(Y_{\pi^{-1}}) \ ,$$

 $d_{\rm iso}$: distance to isotonic matrices in Frobenius norm.

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Least-Square |Flammarion et al., 2019|

Brute-Force all n! permutations π until $Y_{\pi^{-1}}$ is close to an isotonic matrix:

$$\hat{\pi} = \underset{\pi}{\operatorname{arg\,min}} \ d_{\operatorname{iso}}(Y_{\pi^{-1}}) \ ,$$

 $d_{\rm iso}$: distance to isotonic matrices in Frobenius norm.

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}}(n,n) \lesssim n^{4/3}$$

Least-Square |Flammarion et al., 2019|

Brute-Force all n! permutations π until $Y_{\pi^{-1}}$ is close to an isotonic matrix:

$$\hat{\pi} = \underset{\pi}{\operatorname{arg\,min}} \ d_{\operatorname{iso}}(Y_{\pi^{-1}}) \ ,$$

 $d_{\rm iso}$: distance to isotonic matrices in Frobenius norm.

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}}(n,n) \lesssim n^{4/3}$$

► Better than global average

Least-Square |Flammarion et al., 2019|

Brute-Force all n! permutations π until $Y_{\pi^{-1}}$ is close to an isotonic matrix:

$$\hat{\pi} = \underset{\pi}{\operatorname{arg\,min}} \ d_{\operatorname{iso}}(Y_{\pi^{-1}}) \ ,$$

 $d_{\rm iso}$: distance to isotonic matrices in Frobenius norm.

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}$

Introduction to Ranking

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}}(n,n) \lesssim n^{4/3}$$

- ▶ Better than global average
- Not poly. time

Least-Square |Flammarion et al., 2019|

Brute-Force all n! permutations π until $Y_{\pi^{-1}}$ is close to an isotonic matrix:

$$\hat{\pi} = \underset{\pi}{\operatorname{arg\,min}} \ d_{\operatorname{iso}}(Y_{\pi^{-1}}) \ ,$$

 $d_{\rm iso}$: distance to isotonic matrices in Frobenius norm.

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee on $\hat{\pi}$

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}}(n,n) \lesssim n^{4/3}$$

- ► Better than global average
- Not poly. time
- ► ~4/3 at:11 mat ant:mal

Existing Methods

Introduction to Ranking

- ► Simple Global Average Comparison
- ► Least-Square
- ▶ Poly. Time Methods only in the Bi-isotonic Model

Polynomial Time Method in The Bi-Isotonic Model

Polynomial Time Method in The Bi-Isotonic Model

Local averages [Mao et al., 2018]

Polynomial Time Method in The Bi-Isotonic Model

- Local averages [Mao et al., 2018]
- Change-Point detection [Liu and Moitra, 2020]

Polynomial Time Method in The Bi-Isotonic Model

- Local averages [Mao et al., 2018]
- Change-Point detection [Liu and Moitra, 2020]
- Hierarchical clustering [Liu and Moitra, 2020]

Existing Methods

- ► Local averages [Mao et al., 2018]
- ► Change-Point detection [Liu and Moitra, 2020]
- ► Hierarchical clustering [Liu and Moitra, 2020]

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

00000

- Local averages [Mao et al., 2018]
- ► Change-Point detection [Liu and Moitra, 2020]
- Hierarchical clustering [Liu and Moitra, 2020]

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee in bi-isotonic model when n = d [Liu and Moitra, 2020]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}}(n,n) \le n^{7/6 + o(1)}$$

- Local averages [Mao et al., 2018]
- Change-Point detection [Liu and Moitra, 2020]

Introduction to Ranking

Hierarchical clustering [Liu and Moitra, 2020]

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Contributions and Algo

Guarantee in bi-isotonic model when
$$n=d$$
 [Liu and Moitra, 2020]
$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}}(n,n) \leq n^{7/6+o(1)}$$

Not adapted to the isotonic model (Here $M_{\pi^*n^*}$ bi-isotonic)

- Local averages [Mao et al., 2018]
- ► Change-Point detection [Liu and Moitra, 2020]

Introduction to Ranking

Hierarchical clustering [Liu and Moitra, 2020]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee in bi-isotonic model when n = d [Liu and Moitra, 2020]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}}(n,n) \le n^{7/6 + o(1)}$$

- Not adapted to the isotonic model (Here $M_{\pi^*n^*}$ bi-isotonic)
- Not optimal when $n \ll d$

- Local averages [Mao et al., 2018]
- ► Change-Point detection [Liu and Moitra, 2020]

Introduction to Ranking

Hierarchical clustering [Liu and Moitra, 2020]

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

Guarantee in bi-isotonic model when n = d [Liu and Moitra, 2020]

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}}(n,n) \le n^{7/6+o(1)}$$

- Not adapted to the isotonic model (Here $M_{\pi^*n^*}$ bi-isotonic)
- Not optimal when $n \ll d$
- Not optimal when we have partial observations ($\lambda \ll 1$)

Contributions

Introduction to Ranking

$$\mathcal{R}_{\text{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}^*_{\mathrm{perm}} = \inf_{\hat{\pi}} \, \mathcal{R}^{\hat{\pi}}_{\mathrm{perm}}$$

Contributions

Introduction to Ranking

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}^*_{\mathrm{perm}} = \inf_{\hat{\pi}} \, \mathcal{R}^{\hat{\pi}}_{\mathrm{perm}}$$

Theorem

In the Isotonic model, for all n, d, λ ,

Contributions

Introduction to Ranking

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}^*_{\mathrm{perm}} = \inf_{\hat{\pi}} \, \mathcal{R}^{\hat{\pi}}_{\mathrm{perm}}$$

Theorem

In the Isotonic model, for all n, d, λ ,

 \exists poly. time estimator $\hat{\pi}$ that achieves, up to a numerical constant C,

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} \leq \left[\log^{C}(\frac{nd}{\lambda})\right] \mathcal{R}_{\mathrm{perm}}^{*}$$

Contributions

Introduction to Ranking

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}^*_{\mathrm{perm}} = \inf_{\hat{\pi}} \, \mathcal{R}^{\hat{\pi}}_{\mathrm{perm}}$$

Theorem

In the Isotonic model, for all n, d, λ ,

 \exists poly. time estimator $\hat{\pi}$ that achieves, up to a numerical constant C,

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} \leq \left[\log^{C}(\frac{nd}{\lambda})\right] \mathcal{R}_{\mathrm{perm}}^{*}$$

When $\lambda = 1$ and $n \leq d$, up to polylogs:

$$\mathcal{R}^*_{\mathrm{perm}} \asymp n^{2/3} \sqrt{d}$$

Contributions

Introduction to Ranking

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} = \sup_{M, \pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2]$$

$$\mathcal{R}^*_{\mathrm{perm}} = \inf_{\hat{\pi}} \, \mathcal{R}^{\hat{\pi}}_{\mathrm{perm}}$$

Theorem

In the Isotonic model, for all n, d, λ ,

 \exists poly. time estimator $\hat{\pi}$ that achieves, up to a numerical constant C,

$$\mathcal{R}_{\mathrm{perm}}^{\hat{\pi}} \leq \left[\log^{C}(\frac{nd}{\lambda})\right] \mathcal{R}_{\mathrm{perm}}^{*}$$

When $\lambda = 1$ and $n \leq d$, up to polylogs:

$$\mathcal{R}^*_{\mathrm{perm}} \asymp n^{2/3} \sqrt{d}$$

When n=d, we recover the $n^{7/6}$ rate in the easier bi-isotonic model

00000

Weighted Comparison Graph Updates

00000

Weighted Comparison Graph Updates

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \quad \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

Weighted Comparison Graph Updates

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \quad \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

 W_{ij} is large: confident in estimating row i above row j

Weighted Comparison Graph Updates

$$W \in \mathbb{R}^{n \times n}, \quad W_{ij} = -W_{ji}$$

 W_{ij} is large: confident in estimating row i above row j For all i, compute:

Weighted Comparison Graph Updates

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \quad \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

 W_{ij} is large: confident in estimating row i above row j For all i, compute:

1. Neighborhood $G^{(0)}$ of rows around i according to \mathcal{W}

Introduction to Ranking

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \quad \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

 W_{ij} is large: confident in estimating row i above row j For all i, compute:

- 1. Neighborhood $G^{(0)}$ of rows around i according to \mathcal{W}
- 2. Subset of columns $\hat{Q} \subset [d]$

Weighted Comparison Graph Updates

$$\mathcal{W} \in \mathbb{R}^{n imes n}, \quad \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

 W_{ij} is large: confident in estimating row i above row j

For all i, compute:

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of rows around i according to \mathcal{W}
- 2. Subset of columns $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^{\hat{Q}}_{\perp}$

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \quad \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

 W_{ij} is large: confident in estimating row i above row j

For all i, compute:

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of rows around i according to \mathcal{W}
- 2. Subset of columns $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}_+^Q$
- 4. $\mathcal{U}_{ij} = \langle Y_{i\cdot} Y_{j\cdot}, u \rangle$

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \quad \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

 W_{ij} is large: confident in estimating row i above row j

For all i, compute:

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of rows around i according to \mathcal{W}
- 2. Subset of columns $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^Q_{\perp}$
- 4. $\mathcal{U}_{i,i} = \langle Y_{i,\cdot} Y_{i,\cdot}, u \rangle$

If
$$|\mathcal{U}_{ij}| \geq |\mathcal{W}_{ij}|$$
, Update $\mathcal{W}_{ij} := \mathcal{U}_{ij}$

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \quad \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

 W_{ij} is large: confident in estimating row i above row j

For all i, compute:

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of rows around i according to \mathcal{W}
- 2. Subset of columns $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}_+^Q$
- 4. $\mathcal{U}_{i,i} = \langle Y_{i,\cdot} Y_{i,\cdot}, u \rangle$

If
$$|\mathcal{U}_{ij}| \geq |\mathcal{W}_{ij}|$$
, Update $\mathcal{W}_{ij} := \mathcal{U}_{ij}$

▶ Perform a polylog number of iterations

00000

For all i, compute:

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^{\hat{Q}}_{\perp}$
- 4. $\mathcal{U}_{ij} = \langle Y_{i\cdot} Y_{j\cdot}, u \rangle$

If $|\mathcal{U}_{ij}| \geq |\mathcal{W}_{ij}|$, Update $W_{ij} := U_{ij}$

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \ \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

For all i, compute:

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^{\hat{Q}}_{\perp}$
- 4. $\mathcal{U}_{ij} = \langle Y_i Y_j, u \rangle$

If
$$|\mathcal{U}_{ij}| \ge |\mathcal{W}_{ij}|$$
,
Update $\mathcal{W}_{ij} := \mathcal{U}_{ij}$

Final weighted graph \mathcal{W}^{f}

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \, \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

Permutation Estimation

Contributions and Algo

For all i, compute:

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^{\hat{Q}}_{\perp}$
- 4. $\mathcal{U}_{ij} = \langle Y_i Y_j, u \rangle$

If
$$|\mathcal{U}_{ij}| \geq |\mathcal{W}_{ij}|$$
,
Update $\mathcal{W}_{ij} := \mathcal{U}_{ij}$

Final weighted graph \mathcal{W}^{f}

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \ \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^Q_{\perp}$
- 4. $\mathcal{U}_{ij} = \langle Y_i Y_j, u \rangle$

If
$$|\mathcal{U}_{ij}| \ge |\mathcal{W}_{ij}|$$
,
Update $\mathcal{W}_{ij} := \mathcal{U}_{ij}$

Final weighted graph \mathcal{W}^{f}

Permutation Estimation

Thresholded Graphs

$$\mathcal{G}(\gamma) = \{(i,j) : \mathcal{W}_{ij}^{\mathrm{f}} \ge \gamma\}$$

Contributions and Algo

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \, \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^Q_{\perp}$
- 4. $\mathcal{U}_{ij} = \langle Y_i Y_j, u \rangle$

If
$$|\mathcal{U}_{ij}| \ge |\mathcal{W}_{ij}|$$
,
Update $\mathcal{W}_{ij} := \mathcal{U}_{ij}$

Final weighted graph \mathcal{W}^{f}

Permutation Estimation

Thresholded Graphs

$$\mathcal{G}(\gamma) = \{(i,j) : \mathcal{W}_{ij}^{\mathrm{f}} \ge \gamma\}$$

- \triangleright $\mathcal{G}(\gamma)$ is \emptyset if γ is large
- $\mathcal{C}(0)$ is the complete graph

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \, \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^Q_{\perp}$
- 4. $\mathcal{U}_{ij} = \langle Y_i Y_j, u \rangle$

If
$$|\mathcal{U}_{ij}| \ge |\mathcal{W}_{ij}|$$
,
Update $\mathcal{W}_{ij} := \mathcal{U}_{ij}$

Final weighted graph \mathcal{W}^{t}

Permutation Estimation

Thresholded Graphs

$$\mathcal{G}(\gamma) = \{(i,j) : \mathcal{W}_{ij}^{\mathrm{f}} \ge \gamma\}$$

Contributions and Algo

Minimal threshold

$$\hat{\gamma} = \inf_{\gamma} \{ \mathcal{G}(\gamma) \text{ is acyclic} \}$$

- \triangleright $\mathcal{G}(\gamma)$ is \emptyset if γ is large
- $\mathcal{C}(0)$ is the complete graph

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \ \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^Q$
- 4. $\mathcal{U}_{i,i} = \langle Y_i, -Y_i, u \rangle$

If $|\mathcal{U}_{ij}| \geq |\mathcal{W}_{ij}|$, Update $W_{ij} := U_{ij}$

Final weighted graph \mathcal{W}^{f}

Permutation Estimation

Thresholded Graphs

$$\mathcal{G}(\gamma) = \{(i,j) : \mathcal{W}_{ij}^{\mathrm{f}} \ge \gamma\}$$

Contributions and Algo

Minimal threshold

$$\hat{\gamma} = \inf_{\gamma} \{ \mathcal{G}(\gamma) \text{ is acyclic} \}$$

Estimator $\hat{\pi}$ is such that

$$(i,j) \in \mathcal{G}(\hat{\gamma}) \implies \hat{\pi}(i) > \hat{\pi}(j)$$

- \triangleright $\mathcal{G}(\gamma)$ is \emptyset if γ is large
- $\mathcal{C}(0)$ is the complete graph

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \ \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

Introduction to Ranking

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^Q$
- 4. $\mathcal{U}_{i,i} = \langle Y_i, -Y_i, u \rangle$

If $|\mathcal{U}_{ij}| \geq |\mathcal{W}_{ij}|$, Update $W_{ij} := U_{ij}$

Final weighted graph \mathcal{W}^{f}

Permutation Estimation

Thresholded Graphs

$$\mathcal{G}(\gamma) = \{(i,j) : \mathcal{W}_{ij}^{\mathrm{f}} \ge \gamma\}$$

Minimal threshold

$$\hat{\gamma} = \inf_{\gamma} \{ \mathcal{G}(\gamma) \text{ is acyclic} \}$$

Estimator $\hat{\pi}$ is such that

$$(i,j) \in \mathcal{G}(\hat{\gamma}) \implies \hat{\pi}(i) > \hat{\pi}(j)$$

- \triangleright $\mathcal{G}(\gamma)$ is \emptyset if γ is large
- $\mathcal{C}(0)$ is the complete graph

Contributions and Algo $000 \bullet 0$

Choosing \hat{Q}

Contributions and Algo 000●0

Introduction to Ranking

For a given row i, consider:

For a given row i, consider:

▶ Neighborhood $G^{(0)}$ of i

$G^{(4)}$	
$G^{(3)}$	
$G^{(2)}$	
$G^{(1)}$	
$G^{(0)}$	
$G^{(-1)}$	
$G^{(-2)}$	
$G^{(-3)}$	

For a given row i, consider:

- ▶ Neighborhood $G^{(0)}$ of i
- \triangleright Set \mathcal{V}^+ of rows j above $G^{(0)}$
- ▶ Set V^- of rows j below $G^{(0)}$

	$G^{(4)}$	
	$G^{(3)}$	
\mathcal{V}_+	$G^{(2)}$	
	$G^{(1)}$	
	$G^{(0)}$	
\mathcal{V}_{-}	$G^{(-1)}$	
	$G^{(-2)}$	
	$G^{(-3)}$	

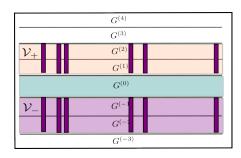
Contributions and Algo

00000

Introduction to Ranking

For a given row i, consider:

- ▶ Neighborhood $G^{(0)}$ of i
- \triangleright Set \mathcal{V}^+ of rows j above $G^{(0)}$
- \triangleright Set \mathcal{V}^- of rows j below $G^{(0)}$



Set \hat{Q}

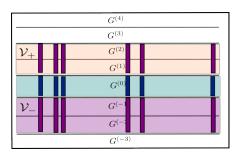
Reduce the dim. of columns to

$$\hat{Q} = \{k : \frac{1}{|\mathcal{V}^+|} \sum_{i \in \mathcal{V}^+} Y_{ik} - \frac{1}{|\mathcal{V}^-|} \sum_{i \in \mathcal{V}^-} Y_{ik} > h\}$$

Introduction to Ranking

For a given row i, consider:

- ▶ Neighborhood $G^{(0)}$ of i
- \triangleright Set \mathcal{V}^+ of rows j above $G^{(0)}$
- \triangleright Set \mathcal{V}^- of rows j below $G^{(0)}$



Contributions and Algo

 $Y(G^{(0)}, \hat{Q})$

Reduce the dim. of columns to

$$\hat{Q} = \{k : \frac{1}{|\mathcal{V}^+|} \sum_{i \in \mathcal{V}^+} Y_{ik} - \frac{1}{|\mathcal{V}^-|} \sum_{i \in \mathcal{V}^-} Y_{ik} > h\}$$

00000

For all i, compute:

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^{\tilde{Q}}_{\perp}$
- 4. $\mathcal{U}_{ij} = \langle Y_i Y_j, u \rangle$

If $|\mathcal{U}_{ij}| \geq |\mathcal{W}_{ij}|$, Update $W_{ij} := U_{ij}$

Final weighted graph W^{f}

$$\mathcal{W} \in \mathbb{R}^{n \times n}, \ \mathcal{W}_{ij} = -\mathcal{W}_{ji}$$

- 1. Neighborhood $G^{(0)}$ of i
- 2. Subset $\hat{Q} \subset [d]$
- 3. Vector $u \in \mathbb{R}^{\tilde{Q}}_{\perp}$
- 4. $\mathcal{U}_{i,i} = \langle Y_i Y_i, u \rangle$

If
$$|\mathcal{U}_{ij}| \ge |\mathcal{W}_{ij}|$$
,
Update $\mathcal{W}_{ij} := \mathcal{U}_{ij}$

Final weighted graph W^{f}

Spectral method on $Y(G^{(0)}, \hat{Q})$

Contributions and Algo

0000

Introduction to Ranking

Introduction to Ranking

Isotonic Model

▶ Weak non-parametric assumptions

Introduction to Ranking

- ▶ Weak non-parametric assumptions
- ▶ Poly. time and near minimax optimal ranking method

Introduction to Ranking

- ► Weak non-parametric assumptions
- ▶ Poly. time and near minimax optimal ranking method
- ▶ Results adapted to rectangular cases and partial observations

Introduction to Ranking

- ► Weak non-parametric assumptions
- ▶ Poly. time and near minimax optimal ranking method
- Results adapted to rectangular cases and partial observations
- ► Can be associated with isotonic regression for optimal estimation of the whole matrix M

Introduction to Ranking

- ► Weak non-parametric assumptions
- ▶ Poly. time and near minimax optimal ranking method
- ▶ Results adapted to rectangular cases and partial observations
- ► Can be associated with isotonic regression for optimal estimation of the whole matrix M
- Improve existing poly, time rates in all the regimes in the easier bi-isotonic model

Crowdsourcing Problems with Unknown Labels

Vector of unknown labels $x^* \in \{-1, 1\}^d$

$$Y_{ik} = \begin{cases} x_k^*, & \text{with probability } M_{ik}, \\ -x_k^*, & \text{with probability } 1 - M_{ik}. \end{cases}$$

Objective: recover the vector of labels x^* and close the computational gap conjectured in [Shah et al., 2020]

Crowdsourcing Problems with Unknown Labels

Vector of unknown labels $x^* \in \{-1, 1\}^d$

$$Y_{ik} = \begin{cases} x_k^*, & \text{with probability } M_{ik}, \\ -x_k^*, & \text{with probability } 1 - M_{ik}. \end{cases}$$

Objective: recover the vector of labels x^* and close the computational gap conjectured in [Shah et al., 2020]

Partial observations:

$$Y_{ik} = \pm x_k^*$$
 with probability λ .

Spectral Method

Simple scenario in **isotonic** model:

$$M := M(G^{(0)}, \hat{Q}) = \frac{1}{2} + \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & h & h & 0 & h & 0 & 0 & h \\ 0 & h & h & 0 & h & 0 & 0 & h \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & h & h & 0 & h & 0 & 0 & h \end{pmatrix}$$

- Rank 1 matrix: spectral gap if h is large.
- ► Compute:

$$\hat{v} = \sup_{\|v\|=1} \|v^T Y\|_2^2$$
.

▶ In the isotonic model, use that

$$||M - \overline{M}||_{\text{op}} \ge \frac{1}{\log^C(nd)} ||M - \overline{M}||_F$$
.

▶ Iterate a spectral method a polylogarithmic number of time.

Parametric Models

Observation Model

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0,1]^{n \times d}$

- ► Independent observations
- ightharpoonup Poisson(1) observations per entry (i, k)

Noisy Sorting:

[Braverman and Mossel, 2008]

$$|M_{ik} - \frac{1}{2}| \ge \gamma ,$$

For some $\gamma > 0$

• Goal: Estimate π^* such that $M_{\pi^*(i+1),\pi^*(i)} \geq \frac{1}{2} + \gamma$

BTL: [Bradley and Terry, 1952] Unknown vector $\theta \in \mathbb{R}^n$

$$M_{ik} = \frac{e^{(\theta_i - \theta_k)}}{1 + e^{(\theta_i - \theta_k)}}$$

- \triangleright θ_i : ability of player i
- ► Goal: estimate a ranking π^* such that $\theta_{\pi^*(1)} \leq \cdots \leq \theta_{\pi^*(n)}$

Non-Parametric Models

Observation Model

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0, 1]^{n \times d}$

- ► Independent observations
- ightharpoonup Poisson(1) observations per entry (i, k)

SST: [Shah et al., 2016]

 \exists unknown permutation π^* :

 M_{π^*,π^*} is bi-isotonic

e.g.:
$$\begin{pmatrix} 0.5 & 0.6 & 0.8 \\ 0.4 & 0.5 & 0.7 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}$$

- ▶ $M_{ij} \ge 1/2$ implies $M_{ik} \ge M_{jk}$
- ▶ Goal: estimate π^*

Bi-Isotonic-2D: [Mao et al., 2018]

 \exists unknown permutations π^* , η^* :

 M_{π^*,η^*} is bi-isotonic

 η^* represents a ranking of the difficulty of the questions

Non-Parametric Bi-Isotonic-1D and Isotonic Models

Observation Model

 $Y_{ik} = \text{Bern}(M_{ik}), \text{ with } M \in [0, 1]^{n \times d}$

- ► Independent observations
- ightharpoonup Poisson(1) observations per entry (i, k)

Bi-Isotonic-1D: [Mao et al., 2018]

 \exists unknown permutations π^* :

 M_{π^*} is bi-isotonic

- Corresponds to $\eta^* = id$ in the bi-isotonic-2D model
- ► The questions are ordered by difficulty

Isotonic: [Flammarion et al., 2019]

 \exists unknown permutation π^* :

 M_{π^*} is isotonic

- No isotonicity constraint on the rows of M
- ► More flexible than the bi-isotonic 1D, 2D models and SST

Summary

Parametric Models

- $\blacktriangleright \text{ BTL: } M_{ik} = \frac{e^{(\theta_i \theta_k)}}{1 + e^{(\theta_i \theta_k)}}$
- ▶ Noisy Sorting: $|M_{ik} \frac{1}{2}| \ge \gamma$

Non-Parametric Models

- ► SST: $M_{\pi^*\pi^*}$ is bi-isotonic
- ▶ Bi-Isotonic-2D: $M_{\pi^*\eta^*}$ is bi-isotonic
- ▶ Bi-Isotonic-1D: M_{π^*} is bi-isotonic
- ▶ Isotonic: M_{π^*} is isotonic

Sorting models by statistical difficulty:

Bi-isotonic-1D \prec Bi-Isotonic-2D \prec Isotonic

Rates in Isotonic and Bi-Isotonic-1D Models

Isotonic Model:

	$n \lesssim d^{3/2}$	$d^{3/2} \lesssim n$
$\mathcal{R}^*_{\mathrm{perm}}$	$n^{2/3}\sqrt{d}$	n
$\mathcal{R}^*_{\mathrm{est}}$	$n^{1/3}d$	n

Bi-Isotonic-1D Model:

	$n \lesssim d^{1/3}$	$d^{1/3} \lesssim n \lesssim d$	$d \lesssim n$
$\mathcal{R}^*_{ ext{perm}}$	$nd^{1/6}$	$n^{3/4}d^{1/4}$	n
$\mathcal{R}^*_{\mathrm{est}}$	$nd^{1/3}$	\sqrt{nd}	n

References I

Bradley, R. A. and Terry, M. E. (1952).

Rank analysis of incomplete block designs: I. the method of paired comparisons.

Biometrika, 39(3/4):324-345.

Braverman, M. and Mossel, E. (2008).

Noisy sorting without resampling.

In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 268–276.

Cattelan, M., Varin, C., and Firth, D. (2013).

Dynamic bradley-terry modelling of sports tournaments.

Journal of the Royal Statistical Society Series C: Applied Statistics, 62(1):135–150.

References II

Chen, P., Gao, C., and Zhang, A. Y. (2022).

Partial recovery for top-k ranking: Optimality of mle and suboptimality of the spectral method.

The Annals of Statistics, 50(3):1618-1652.

Flammarion, N., Mao, C., and Rigollet, P. (2019). Optimal rates of statistical seriation.

Liu, A. and Moitra, A. (2020).

Better algorithms for estimating non-parametric models in crowd-sourcing and rank aggregation.

In Abernethy, J. and Agarwal, S., editors, *Proceedings of Thirty Third Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pages 2780–2829. PMLR.

References III

Mao, C., Pananjady, A., and Wainwright, M. J. (2018).

Towards optimal estimation of bivariate isotonic matrices with unknown permutations.

 $arXiv\ preprint\ arXiv:1806.09544.$

Shah, N., Balakrishnan, S., Guntuboyina, A., and Wainwright, M. (2016).

Stochastically transitive models for pairwise comparisons: Statistical and computational issues.

In International Conference on Machine Learning, pages 11–20. PMLR.

Shah, N. B., Balakrishnan, S., and Wainwright, M. J. (2020).

A permutation-based model for crowd labeling: Optimal estimation and robustness.

IEEE Transactions on Information Theory, 67(6):4162–4184.