Optimal Permutation Estimation in Crowd-Sourcing Problems

Emmanuel Pilliat

Université de Montpellier and INRAE

Based on a joint work with Alexandra Carpentier (Uni Potsdam) and Nicolas Verzelen (INRAE)

March, 21st 2023

Typical Dataset in Crowd-Sourcing

Cifar10H dataset: 10000 images, 10 labels.

Typical Dataset in Crowd-Sourcing

Cifar10H dataset: 10000 images, 10 labels.

- Identification a worker: annotator_id

Typical Dataset in Crowd-Sourcing

Cifar10H dataset: 10000 images, 10 labels.

- Identification a worker: annotator_id
- Evaluation on a given image: correct_guess

Typical Dataset in Crowd-Sourcing

Frog (??)

- Identification a worker: annotator_id
- Evaluation on a given image: correct_guess

This Talk

We consider a ranking problem:

- Given the observation of the correctness of answers of n experts on d questions,
- We want to rank the experts according to their ability.

Question: how well can we recover their ranking in a minimax sense?

Example of Possible Data

$$
4 \text { experts }\left(\begin{array}{cccccccccc}
10 & \text { questions } \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

0 : Wrong answer 1 : Correct answer

Example of Possible Data

$$
\begin{gathered}
\text { c } 10 \text { questions } \\
4 \text { experts }\left(\begin{array}{cccccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \\
0: \text { Wrong answer } 1: \text { Correct answer }
\end{gathered}
$$

Bad Experts

Good Experts

Example of Possible Data

$$
\begin{gathered}
\text { 8 experts } 10 \text { questions } \\
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \\
0: \text { Wrong answer } \\
\text { 1: Correct answer }
\end{gathered}
$$

Hard Questions

Easy Questions

Example of Possible Data

10 questions

$$
4 \text { experts }\left(\begin{array}{llllllllll}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

0 : Wrong answer 1 : Correct answer
This talk: Ranking of Experts

Example of Possible Data

$$
\begin{gathered}
\text { 8 experts } 10 \text { questions } \\
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \\
0: \text { Wrong answer } \\
\text { 1: Correct answer }
\end{gathered}
$$

This talk: Ranking of Experts
Under Known Difficulty of the questions

Experts/Questions Setting
Experts $i \in\{1, \ldots, n\}$ and questions $k \in\{1, \ldots, d\}$. We observe for all i, k :

$$
Y_{i k} \sim \operatorname{Bern}\left(M_{i k}\right)
$$

1: Correct 0: Wrong

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Experts/Questions Setting

Experts $i \in\{1, \ldots, n\}$ and questions $k \in\{1, \ldots, d\}$. We observe for all i, k :

$$
Y_{i k} \sim \operatorname{Bern}\left(M_{i k}\right)
$$

1: Correct 0: Wrong

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

expert i correct at question k

$$
\Leftrightarrow Y_{i k}=1 .
$$

Experts/Questions Setting

Experts $i \in\{1, \ldots, n\}$ and questions $k \in\{1, \ldots, d\}$. We observe for all i, k :

$$
Y_{i k} \sim \operatorname{Bern}\left(M_{i k}\right)
$$

1: Correct 0: Wrong

$$
\left(\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

- $M_{i k}=1 / 2$: random choice of expert i at question k
- $M_{i k}=1$: Expert i knows perfectly the answer of question k

Statistical Models

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

Statistical Models

> Observation Model $\begin{aligned} Y & =M+\varepsilon \in \mathbb{R}^{n \times d} \\ & >\left(\varepsilon_{i k}\right) \text { i.i.d. subGaussian (e.g. Bernoulli) }\end{aligned}$

Statistical Models

$$
\begin{aligned}
& \text { Observation Model } \\
& \begin{aligned}
Y & =M+\varepsilon \in \mathbb{R}^{n \times d} \\
& >\left(\varepsilon_{i k}\right) \text { i.i.d. subGaussian (e.g. Bernoulli) } \\
& >M_{i k} \in[0,1] \text { for all } i, k
\end{aligned}
\end{aligned}
$$

Statistical Models

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian (e.g. Bernoulli)
- $M_{i k} \in[0,1]$ for all i, k

Parametric Models for M :

- Questions Equaly Difficult $\leadsto M_{i k}=a_{i} \quad \approx[$ Dawid and Skene, 1979]
- Ability/Difficulty $\sim M_{i k}=\phi\left(\alpha_{i}-\beta_{k}\right) \quad \approx[$ Bradley and Terry, 1952]

Statistical Models

Observation Model

$$
\begin{aligned}
Y & =M+\varepsilon \in \mathbb{R}^{n \times d} \\
& \left(\varepsilon_{i k}\right) \text { i.i.d. subGaussian (e.g. Bernoulli) } \\
& >M_{i k} \in[0,1] \text { for all } i, k
\end{aligned}
$$

Parametric Models for M :

- Questions Equaly Difficult $\leadsto M_{i k}=a_{i} \quad \approx[$ Dawid and Skene, 1979]
- Ability/Difficulty $\leadsto M_{i k}=\phi\left(\alpha_{i}-\beta_{k}\right) \quad \approx[$ Bradley and Terry, 1952]

Non-Parametric Models for $M \quad \approx[$ Mao et al., 2018]

- Increasing Rows: $M_{i, k} \leq M_{i, k+1}$

Statistical Models

Observation Model

$$
\begin{aligned}
Y & =M+\varepsilon \in \mathbb{R}^{n \times d} \\
& \left(\varepsilon_{i k}\right) \text { i.i.d. subGaussian (e.g. Bernoulli) } \\
& >M_{i k} \in[0,1] \text { for all } i, k
\end{aligned}
$$

Parametric Models for M :

- Questions Equaly Difficult $\sim M_{i k}=a_{i} \quad \approx[$ Dawid and Skene, 1979]
- Ability/Difficulty $\sim M_{i k}=\phi\left(\alpha_{i}-\beta_{k}\right) \quad \approx[$ Bradley and Terry, 1952]

Non-Parametric Models for $M \quad \approx[$ Mao et al., 2018]

- Increasing Rows: $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns up to permutation π^{*} of rows: $M_{\pi^{*}(i), k} \leq M_{\pi^{*}(i+1), k}$

Statistical Models

Observation Model

$$
\begin{aligned}
Y & =M+\varepsilon \in \mathbb{R}^{n \times d} \\
& \left(\varepsilon_{i k}\right) \text { i.i.d. subGaussian (e.g. Bernoulli) } \\
& >M_{i k} \in[0,1] \text { for all } i, k
\end{aligned}
$$

Parametric Models for M:

- Questions Equaly Difficult $\leadsto M_{i k}=a_{i} \quad \approx[$ Dawid and Skene, 1979]
- Ability/Difficulty $\sim M_{i k}=\phi\left(\alpha_{i}-\beta_{k}\right) \quad \approx[$ Bradley and Terry, 1952]

Non-Parametric Models for $M \quad \approx[$ Mao et al., 2018]

- Increasing Rows: $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns up to permutation π^{*} of rows: $M_{\pi^{*}(i), k} \leq M_{\pi^{*}(i+1), k}$

Non Parametric Model

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Non Parametric Model

> Observation Model $\begin{aligned} Y & =M+\varepsilon \in \mathbb{R}^{n \times d} \\ & \text { - }\left(\varepsilon_{i k}\right) \text { i.i.d. subGaussian } \\ & \text { - } M_{i k} \in[0,1] \text { for all } i, k\end{aligned}$

Shape Constraints
(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

$$
\text { White }=0 ; \text { Black }=1
$$

Matrix $M_{\pi^{*}}$. (isotonic).

Non Parametric Model

> Observation Model $\begin{aligned} Y & =M+\varepsilon \in \mathbb{R}^{n \times d} \\ & \left(\varepsilon_{i k}\right) \text { i.i.d. subGaussian } \\ & M_{i k} \in[0,1] \text { for all } i, k\end{aligned}$

Shape Constraints
(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

White $=0$; Black $=1$

Matrix $M_{\pi^{*}}$. (isotonic).

Non Parametric Model

> Observation Model $\begin{aligned} Y & =M+\varepsilon \in \mathbb{R}^{n \times d} \\ & \left(\varepsilon_{i k}\right) \text { i.i.d. subGaussian } \\ & M_{i k} \in[0,1] \text { for all } i, k\end{aligned}$

Shape Constraints
(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

White $=0 ;$ Black $=1$

Matrix M (isotonic up to a permutation of experts).

Non Parametric Model

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Shape Constraints
(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

White $=0 ;$ Black $=1$

Matrix $Y(M$ in noise $)$.

Non Parametric Model

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Shape Constraints
(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

Aim

Estimation of π^{*}.

White $=0 ;$ Black $=1$

Matrix $Y(M$ in noise $)$.

Example with $n, d=150, M \in[0,1]$

Example with $n, d=150, M \in[0.25,0.75]$

Example with $n, d=150, M \in[0.4,0.6]$

Bi-isotonic M - Other representation

Each line $M_{i, \text { represents an expert } i}$

Bi-isotonic M - Other representation

Each line $M_{i, \text { represents an expert } i}$

Bi-isotonic M - Other representation

Each line $M_{i, \text { represents an expert } i}$

Non Parametric Model
Observation Model
$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Shape Constraints

(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

Error Measures

Non Parametric Model

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Shape Constraints

(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^{*}

$$
\begin{aligned}
& \text { Perm-Loss : }=\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2} \\
= & \sum_{i=1}^{n} \sum_{k=1}^{d}\left(M_{\pi(i), k}-M_{\pi^{*}(i), k}\right)^{2}
\end{aligned}
$$

Non Parametric Model

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Shape Constraints

(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^{*}

$$
\text { Perm-Loss }:=\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}
$$

If the two lines are misclassified:

$$
\text { Perm-Loss }=2 r h^{2}
$$

Non Parametric Model

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Shape Constraints

(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^{*}

$$
\text { Perm-Loss }:=\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}
$$

Estimation loss

For an estimator \hat{M} of M
Estim-Loss $:=\|\hat{M}-M\|_{F}^{2}$.

Non Parametric Model

Observation Model

$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Shape Constraints

(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^{*}

$$
\text { Perm-Loss }:=\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}
$$

Estimation loss

For an estimator \hat{M} of M
Estim-Loss : $=\|\hat{M}-M\|_{F}^{2}$.

Aim

Estimation of π^{*}.

Non Parametric Model
Observation Model
$Y=M+\varepsilon \in \mathbb{R}^{n \times d}$

- $\left(\varepsilon_{i k}\right)$ i.i.d. subGaussian
- $M_{i k} \in[0,1]$ for all i, k

Shape Constraints

(Bi-isotonicity):

- Increasing Rows $M_{i, k} \leq M_{i, k+1}$
- Increasing Columns for an unknown permutation π^{*}

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^{*}

$$
\text { Perm-Loss }:=\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}
$$

Estimation loss

For an estimator \hat{M} of M
Estim-Loss $:=\|\hat{M}-M\|_{F}^{2}$.

Aim

Estimation of π^{*}.

Error Measures
MiniMax-Risk

Permutation loss

For an estimator $\hat{\pi}$ of π^{*}

$$
\text { Perm-Loss }:=\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2} \text {. }
$$

Estimation loss

For an estimator \hat{M} of M

$$
\text { Estim-Loss }:=\|\hat{M}-M\|_{F}^{2} .
$$

Aim

Estimation of π^{*}.

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^{*}

$$
\text { Perm-Loss }:=\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2} \text {. }
$$

Estimation loss

For an estimator \hat{M} of M

$$
\text { Estim-Loss }:=\|\hat{M}-M\|_{F}^{2} .
$$

MiniMax-Risk

Max-Risk and MiniMax-Risk

If $\hat{\pi}$ is an estimator of π^{*}, we define

$$
\begin{aligned}
& \operatorname{Max}-\operatorname{Perm}(\hat{\pi}) \\
& =\sup _{M, \pi^{*}} \mathbb{E}\left[\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}\right],
\end{aligned}
$$

$\operatorname{MiniMax}-\operatorname{Perm}=\inf _{\hat{\pi}}(\operatorname{Max}-\operatorname{Perm}(\hat{\pi}))$

Aim

Estimation of π^{*}.

Error Measures

Permutation loss

For an estimator $\hat{\pi}$ of π^{*}

$$
\text { Perm-Loss }:=\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2} \text {. }
$$

Estimation loss

For an estimator \hat{M} of M

$$
\text { Estim-Loss }:=\|\hat{M}-M\|_{F}^{2} .
$$

Aim

Estimation of π^{*}.

MiniMax-Risk

Max-Risk and MiniMax-Risk

If $\hat{\pi}$ is an estimator of π^{*}, we define

$$
\begin{aligned}
& \operatorname{Max}-\operatorname{Perm}(\hat{\pi}) \\
& =\sup _{M, \pi^{*}} \mathbb{E}\left[\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}\right],
\end{aligned}
$$

MiniMax-Perm $=\inf _{\hat{\pi}}(\operatorname{Max}-\operatorname{Perm}(\hat{\pi}))$

Define similarly Max-Estim and MiniMax-Estim for estimation of M with \hat{M}.

Other Ranking and Permutation Problems

Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019]
M is bi-isotonic up to permutations π^{*} and σ^{*} of rows and columns. Objective: ranking the experts and the questions.

Other Ranking and Permutation Problems

Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019]
M is bi-isotonic up to permutations π^{*} and σ^{*} of rows and columns. Objective: ranking the experts and the questions.
- Column isotony [Flammarion et al., 2019]

Other Ranking and Permutation Problems

Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019]
M is bi-isotonic up to permutations π^{*} and σ^{*} of rows and columns. Objective: ranking the experts and the questions.
- Column isotony [Flammarion et al., 2019]

Ranking players in a tournament: M is a $n \times n$ matrix with symmetries.

- Non-parametric Models SST [Shah et al., 2016]

Other Ranking and Permutation Problems

Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019]
M is bi-isotonic up to permutations π^{*} and σ^{*} of rows and columns. Objective: ranking the experts and the questions.
- Column isotony [Flammarion et al., 2019]

Ranking players in a tournament: M is a $n \times n$ matrix with symmetries.

- Non-parametric Models SST [Shah et al., 2016]
- Parametric Models:

Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2022])

Other Ranking and Permutation Problems

Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019]
M is bi-isotonic up to permutations π^{*} and σ^{*} of rows and columns. Objective: ranking the experts and the questions.
- Column isotony [Flammarion et al., 2019]

Ranking players in a tournament: M is a $n \times n$ matrix with symmetries.

- Non-parametric Models SST [Shah et al., 2016]
- Parametric Models:

Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2022])

Short story:

- No computational gap for parametric models (BLT, noisy sorting)
- Mostly unknown for non-parametric models: computational gaps were conjectured

Main questions

1. Is there a computational-statistical gap?

Main questions

1. Is there a computational-statistical gap?
2. Is Estimating π^{*} much easier than estimating M ?

Main questions

1. Is there a computational-statistical gap?
2. Is Estimating π^{*} much easier than estimating M ?

Our Contributions

For all n, d :

- Control of MiniMax-Perm
- A polynomial-time procedure achieves MiniMax-Perm

Existing Methods

- Non-Polynomial Time Methods with Least Square
- Simple Global Average Comparison
- [Liu and Moitra, 2020] based on Hierarchical Clustering

Least Square on Bi-isotinic Matrix

$M_{\pi}{ }^{*}$

Non-Polynomial Time Method

[Mao et al., 2018]

- Perm the set of all permutation of $\{1, \ldots, n\}$
- Mon be the set of all bi-isotonic matrix in $[0,1]$

Least-square estimator

$\left(\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}\right)=$

$$
\underset{\widetilde{M} \in \text { Mon }, \widetilde{\pi} \in \text { Perm }}{\arg \min }\left\|\widetilde{M}_{\widetilde{\pi}}-Y\right\|_{F}^{2}
$$

Non-Polynomial Time Method

 [Mao et al., 2018]- Perm the set of all permutation of $\{1, \ldots, n\}$
- Mon be the set of all bi-isotonic matrix in $[0,1]$

Least-square estimator

$$
\left(\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}\right)=
$$

$$
\arg \min \quad\left\|\widetilde{M}_{\widetilde{\pi}}-Y\right\|_{F}^{2}
$$

$$
\widetilde{M} \in \text { Mon, } \widetilde{\pi} \in \text { Perm }
$$

Matrix $M_{\pi^{*}, .}$ (bi-isotonic).

Non-Polynomial Time Method

[Mao et al., 2018]

- Perm the set of all permutation of $\{1, \ldots, n\}$
- Mon be the set of all bi-isotonic matrix in $[0,1]$

Least-square estimator

$$
\begin{aligned}
& \left(\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}\right)= \\
& \quad \underset{\widetilde{M} \in \operatorname{Mon}, \widetilde{\pi} \in \operatorname{Perm}}{\arg \min }\left\|\widetilde{M}_{\widetilde{\pi}}-Y\right\|_{F}^{2}
\end{aligned}
$$

Matrix M.

Non-Polynomial Time Method [Mao et al., 2018]

- Perm the set of all permutation of $\{1, \ldots, n\}$
- Mon be the set of all bi-isotonic matrix in $[0,1]$

Least-square estimator

$$
\begin{aligned}
& \left(\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}\right)= \\
& \quad \underset{\widetilde{M} \in \operatorname{Mon}, \widetilde{\pi} \in \operatorname{Perm}}{\arg \min }\left\|\widetilde{M}_{\widetilde{\pi}}-Y\right\|_{F}^{2}
\end{aligned}
$$

Matrix Y.

Non-Polynomial Time Method
[Mao et al., 2018]

- Perm the set of all permutation of $\{1, \ldots, n\}$

No know polynomial-time method to compute $\left(\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}\right)$

- Mon be the set of all bi-isotonic matrix in $[0,1]$

Least-square estimator

$\left(\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}\right)=$

$$
\underset{\widetilde{M} \in \text { Mon }, \widetilde{\pi} \in \text { Perm }}{\arg \min }\left\|\widetilde{M}_{\widetilde{\pi}}-Y\right\|_{F}^{2}
$$

Non-Polynomial Time Method [Mao et al., 2018]

Least-square guarantees ($\hat{\pi}^{\mathrm{LS}}, \hat{M}^{\mathrm{LS}}$) satisfy -up to polylogs:
$\operatorname{Max-Estim}\left(\hat{M}^{\mathrm{LS}}\right) \lesssim n \vee\left(\sqrt{n d} \wedge n d^{1 / 3}\right)$
$\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{LS}}\right) \lesssim n \vee\left(\sqrt{n d} \wedge n d^{1 / 3}\right)$

Non-Polynomial Time Method [Mao et al., 2018]

Least-square guarantees ($\hat{\pi}^{\mathrm{LS}}, \hat{M}^{\mathrm{LS}}$) satisfy -up to polylogs:

$$
\begin{aligned}
\operatorname{Max}-\operatorname{Estim}\left(\hat{M}^{\mathrm{LS}}\right) & \lesssim n \vee\left(\sqrt{n d} \wedge n d^{1 / 3}\right) \\
\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{LS}}\right) & \lesssim n \vee\left(\sqrt{n d} \wedge n d^{1 / 3}\right)
\end{aligned}
$$

Entropy Arguments:

- n ! permutations: $n \asymp \log (n!)$

Non-Polynomial Time Method [Mao et al., 2018]

Least-square guarantees $\left(\hat{\pi}^{\mathrm{LS}}, \hat{M}^{\mathrm{LS}}\right)$ satisfy -up to polylogs:

$$
\begin{aligned}
\operatorname{Max}-\operatorname{Estim}\left(\hat{M}^{\mathrm{LS}}\right) & \lesssim n \vee\left(\sqrt{n d} \wedge n d^{1 / 3}\right) \\
\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{LS}}\right) & \lesssim n \vee\left(\sqrt{n d} \wedge n d^{1 / 3}\right)
\end{aligned}
$$

Entropy Arguments:

- n ! permutations: $n \asymp \log (n!)$
- Covering of bi-isotonic matrices: \log-size $\asymp \sqrt{n d} \wedge n d^{1 / 3}$

Non-Polynomial Time Method [Mao et al., 2018]

Least-square guarantees $\left(\hat{\pi}^{\mathrm{LS}}, \hat{M}^{\mathrm{LS}}\right)$ satisfy -up to polylogs:

$$
\begin{aligned}
\operatorname{Max}-\operatorname{Estim}\left(\hat{M}^{\mathrm{LS}}\right) & \lesssim n \vee\left(\sqrt{n d} \wedge n d^{1 / 3}\right) \\
\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{LS}}\right) & \lesssim n \vee\left(\sqrt{n d} \wedge n d^{1 / 3}\right)
\end{aligned}
$$

Entropy Arguments:

- n ! permutations: $n \asymp \log (n!)$
\rightarrow Covering of bi-isotonic matrices: \log-size $\asymp \sqrt{n d} \wedge n d^{1 / 3}$
Remarks:
- MiniMax-Estim Optimal [Mao et al., 2018]
- not proven to be MiniMax-Perm Optimal

Summary

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$? ?$	$? ?$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n

But algo. not polynomial time.

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Matrix M.

Global Average Comparison

[Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

- Compute expert i average performances on all questions:

$$
\bar{Y}_{i}=\frac{1}{d} \sum_{k=1}^{d} Y_{i k}
$$

Global Average Comparison

[Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

- Compute expert i average performances on all questions:

$$
\bar{Y}_{i}=\frac{1}{d} \sum_{k=1}^{d} Y_{i k}
$$

- Rank experts according to their average: $\hat{\pi}^{\text {av }}$

Global Average Comparison

[Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

- Compute expert i average performances on all questions:

$$
\bar{Y}_{i}=\frac{1}{d} \sum_{k=1}^{d} Y_{i k}
$$

- Rank experts according to their average: $\hat{\pi}^{\text {av }}$

Guarantees on $\hat{\pi}^{\text {av }}$
$\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{av}}\right) \asymp n \sqrt{d}$.

Global Average Comparison
[Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

- Compute expert i average performances on all questions:

$$
\bar{Y}_{i}=\frac{1}{d} \sum_{k=1}^{d} Y_{i k}
$$

- Rank experts according to their average: $\hat{\pi}^{\text {av }}$

Guarantees on $\hat{\pi}^{\text {av }}$
$\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{av}}\right) \asymp n \sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$M_{1, .}=(.5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \ldots .5 \cdot 5 \underbrace{1111111111})$
$M_{2, .}=(.5 .5 .5 .5 .5 \ldots . .5 \cdot 5 \underbrace{.5 .5 \cdot 5.5 \cdot 5.5 .5})$ $\sim \sqrt{d}$

Global Average Comparison
[Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

- Compute expert i average performances on all questions:

$$
\bar{Y}_{i}=\frac{1}{d} \sum_{k=1}^{d} Y_{i k}
$$

- Rank experts according to their average: $\hat{\pi}^{\text {av }}$

Guarantees on $\hat{\pi}^{\text {av }}$
$\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\text {av }}\right) \asymp n \sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$
Y_{1, .}=(01101 \ldots 10 \underbrace{1111111111})
$$

$$
Y_{2, .}=(01000 \ldots 01 \underbrace{1010010100}_{\sim \sqrt{d}})
$$

(Example of Observations)

Global Average Comparison
[Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

- Compute expert i average performances on all questions:

$$
\bar{Y}_{i}=\frac{1}{d} \sum_{k=1}^{d} Y_{i k}
$$

- Rank experts according to their average: $\hat{\pi}^{\text {av }}$

Guarantees on $\hat{\pi}^{\text {av }}$
$\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{av}}\right) \asymp n \sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$
Y_{1, .}=(01101 \ldots 10 \underbrace{1111111111})
$$

$$
Y_{2, .}=(01000 \ldots 01 \underbrace{1010010100}_{\sim \sqrt{d}})
$$

1 and 2 cannot be distinguished with their average: $\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\text {av }}\right)$ $\asymp \sqrt{d}$

Global Average Comparison
[Pananjady and Samworth, 2020, Shah et al., 2019]
Method:

- Compute expert i average performances on all questions:

$$
\bar{Y}_{i}=\frac{1}{d} \sum_{k=1}^{d} Y_{i k}
$$

- Rank experts according to their average: $\hat{\pi}^{\text {av }}$

Guarantees on $\hat{\pi}^{\text {av }}$
$\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{av}}\right) \asymp n \sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$
Y_{1, .}=(01101 \ldots 10 \underbrace{1111111111})
$$

$$
Y_{2, .}=(01000 \ldots 01 \underbrace{1010010100}_{\sim \sqrt{d}})
$$

1 and 2 cannot be distinguished with their average: $\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\text {av }}\right)$ $\asymp \sqrt{d}$

- Lower Bound for $\hat{\pi}^{\text {av }}$: There exists M s.t. $\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\text {av }}\right)$ $\gtrsim n \sqrt{d}$

Global Average Comparison
[Pananjady and Samworth, 2020, Shah et al., 2019]
Method:

- Compute expert i average performances on all questions:

$$
\bar{Y}_{i}=\frac{1}{d} \sum_{k=1}^{d} Y_{i k}
$$

- Rank experts according to their average: $\hat{\pi}^{\text {av }}$

Guarantees on $\hat{\pi}^{\text {av }}$
$\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{av}}\right) \asymp n \sqrt{d}$.

Idea of Proof

Perfect expert on \sqrt{d} questions VS random:

$$
Y_{1, .}=(01101 \ldots 10 \underbrace{1111111111})
$$

$$
Y_{2, .}=(01000 \ldots 01 \underbrace{1010010100}_{\sim \sqrt{d}})
$$

1 and 2 cannot be distinguished with their average: $\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\text {av }}\right)$ $\asymp \sqrt{d}$

- Upper Bound: For any $M, \pi^{*}, \operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{\mathrm{av}}\right)$ $\lesssim n \sqrt{d}$

Summary

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$? ?$	$? ?$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n
Global average (UB)	$n \sqrt{d}$	$n \sqrt{d}$	$n \sqrt{d}$

Remarks:

- Algo. for rates in MiniMax-Estim and MiniMax-Perm not in polynomial time.
- One to one comparisons give UB but sub-optimal whenever $d \gtrsim 1$.

CP and Hierarchical Clustering Based Algo. [Liu and Moitra, 2020]
[Liu and Moitra, 2020] consider only the case $d=n$, and provide a poly. time algo. returning
$\hat{\pi}^{(L M)}$ such that
$\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{(L M)}\right) \lesssim n$.

CP and Hierarchical Clustering Based Algo.
[Liu and Moitra, 2020]
[Liu and Moitra, 2020] consider only the case $d=n$, and provide a poly. time algo. returning
$\hat{\pi}^{(L M)}$ such that

$$
\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{(L M)}\right) \lesssim n .
$$

One can push further their analysis for $d \neq n$ and get $n \vee d$ through this.
Optimal for $d=n$ in which case
MiniMax-Perm $\asymp n$.

CP and Hierarchical Clustering Based Algo. [Liu and Moitra, 2020]
[Liu and Moitra, 2020] consider only the case $d=n$, and provide a poly. time algo. returning
$\hat{\pi}^{(L M)}$ such that

$$
\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{(L M)}\right) \lesssim n .
$$

One can push further their analysis for $d \neq n$ and get $n \vee d$ through this. Optimal for $d=n$ in which case MiniMax-Perm $\asymp n$.

Localisation through CP detection.

CP and Hierarchical Clustering Based Algo. [Liu and Moitra, 2020]
[Liu and Moitra, 2020] consider only the case $d=n$, and provide a poly. time algo. returning $\hat{\pi}^{(L M)}$ such that

$$
\operatorname{Max}-\operatorname{Perm}\left(\hat{\pi}^{(L M)}\right) \lesssim n .
$$

One can push further their analysis for $d \neq n$ and get $n \vee d$ through this. Optimal for $d=n$ in which case

$$
\text { MiniMax-Perm } \asymp n .
$$

Localisation through CP detection.

Hierarchical Tree Sorting

Hierarchical clustering.

Summary

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$? ?$	$? ?$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n
Global average (UB)	$n \sqrt{d}$	$n \sqrt{d}$	$n \sqrt{d}$
Ext. of LM (UB)	d	d	n

Remarks:

- Poly. time algo of LM achieves MiniMax-Perm and MiniMax-Estim for $d=n$
- This algorithm can be analysed in a more refined way for $d \neq n$ - but not done in [Liu and Moitra, 2020].

Minimax and Poly. Time
Theorem [P., Carpentier, Verzelen, 2022] - accepted in AOS
Assume we have polylog samples.
There exists a estimator $\hat{\pi}$ of π^{*} which is poly. time and minimax optimal

$$
\mathbb{E}\left[\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}\right] \lesssim n \vee\left(n^{3 / 4} d^{1 / 4} \wedge n d^{1 / 6}\right) \asymp \text { MiniMax-Perm }
$$

Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022] - accepted in AOS

Assume we have polylog samples.
There exists a estimator $\hat{\pi}$ of π^{*} which is poly. time and minimax optimal

$$
\mathbb{E}\left[\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}\right] \lesssim n \vee\left(n^{3 / 4} d^{1 / 4} \wedge n d^{1 / 6}\right) \asymp \text { MiniMax-Perm }
$$

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$n d^{1 / 6}$	$n^{3 / 4} d^{1 / 4}$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n

Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022] - accepted in AOS

Assume we have polylog samples.
There exists a estimator $\hat{\pi}$ of π^{*} which is poly. time and minimax optimal

$$
\mathbb{E}\left[\left\|M_{\hat{\pi}}-M_{\pi^{*}}\right\|_{F}^{2}\right] \lesssim n \vee\left(n^{3 / 4} d^{1 / 4} \wedge n d^{1 / 6}\right) \asymp \text { MiniMax-Perm }
$$

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$n d^{1 / 6}$	$n^{3 / 4} d^{1 / 4}$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n

Can be combined with bi-isotonic regression to have a poly. time MiniMax-Estim algo!

Summary

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$n d^{1 / 6}$	$n^{3 / 4} d^{1 / 4}$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n

Uniform distance between two experts

Global average comparison is optimal:
Constant Perm-Risk - Confusion only if $h \lesssim 1 / \sqrt{d}$.

Localised distance between two experts

$\psi([d])=\frac{1}{d} \sum_{i=1}^{d} Y_{i}$ achieves
Perm-Risk $\asymp \sqrt{d} \gg d^{1 / 6}$

From Global to Local Averages

Global average good.

Global average bad \rightarrow need to localise.

From Global to Local Averages

Global average good.

Global average bad \rightarrow need to localise.

Idea:

- Estimate by a change point (CP) method windows where any of the two experts changes by more than h.

From Global to Local Averages

Global average good.

Global average bad \rightarrow need to localise.

Idea:

- Estimate by a change point (CP) method windows where any of the two experts changes by more than h.
- Compute local average on these windows.

From Global to Local Averages

Global average good.

Global average bad \rightarrow need to localise.

Idea:

- Estimate by a change point (CP) method windows where any of the two experts changes by more than h.
- Compute local average on these windows.
[Liu and Moitra, 2020] introduced this idea of localisation with CP - in a different context and regime.

Toward a Worst Case Scenario

Idea:

Toward a Worst Case Scenario

- A CP of size h can be detected on a window of $1 / h^{2}$ questions.

Idea:

Toward a Worst Case Scenario

- A CP of size h can be detected on a window of $1 / h^{2}$ questions.
- At most $1 / h$ of these CP, since $M \in[0,1]$

Idea:

Toward a Worst Case Scenario

- A CP of size h can be detected on a window of $1 / h^{2}$ questions.
- At most $1 / h$ of these CP, since $M \in[0,1]$
- If they are indistinguishable at scale h :

$$
\begin{aligned}
\left\|M_{1 \cdot}-M_{2 \cdot}\right\|_{2}^{2} & \leq h\left\|M_{1 \cdot}-M_{2} \cdot\right\|_{1} \\
& \leq h \sqrt{\frac{1}{h^{2}} \frac{1}{h} \wedge d} \\
& \leq d^{1 / 6}
\end{aligned}
$$

Idea:

Toward a Worst Case Scenario

- A CP of size h can be detected on a window of $1 / h^{2}$ questions.
- At most $1 / h$ of these CP, since $M \in[0,1]$
- If they are indistinguishable at scale h :

$$
\begin{aligned}
&\left\|M_{1 \cdot}-M_{2} \cdot\right\|_{2}^{2} \leq h\left\|M_{1 \cdot}-M_{2} \cdot\right\|_{1} \\
& \leq h \sqrt{\frac{1}{h^{2}} \frac{1}{h} \wedge d} \\
& \leq d^{1 / 6} . \\
& \\
& d^{1 / 6} \text { is optimal for two experts: } \\
& \text { MiniMax-Perm } \asymp d^{1 / 6} .
\end{aligned}
$$

Idea:

Toward a Worst Case Scenario

- A CP of size h can be detected on a window of $1 / h^{2}$ questions.
- At most $1 / h$ of these CP, since $M \in[0,1]$
- If they are indistinguishable at scale h :

$$
\begin{aligned}
\left\|M_{1 \cdot}-M_{2 \cdot}\right\|_{2}^{2} & \leq h\left\|M_{1 \cdot}-M_{2} \cdot\right\|_{1} \\
& \leq h \sqrt{\frac{1}{h^{2}} \frac{1}{h} \wedge d} \\
& \leq d^{1 / 6}
\end{aligned}
$$

- $d^{1 / 6}$ is optimal for two experts: MiniMax-Perm $\asymp d^{1 / 6}$.
- For any n (UB): MiniMax-Perm $\lesssim n d^{1 / 6}$.

Summary

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$n d^{1 / 6}$	$n^{3 / 4} d^{1 / 4}$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n
Global average (UB)	$n \sqrt{d}$	$n \sqrt{d}$	$n \sqrt{d}$
Ext. of LM (UB)	d	d	n

Ext. of LM (UB) extends [Liu and Moitra, 2020] to $d \neq n$

Summary

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$n d^{1 / 6}$	$n^{3 / 4} d^{1 / 4}$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n
Global average (UB)	$n \sqrt{d}$	$n \sqrt{d}$	$n \sqrt{d}$
Ext. of LM (UB)	d	d	n

Ext. of LM (UB) extends [Liu and Moitra, 2020] to $d \neq n$

Hierarchical Clustering

Beyond [Liu and Moitra, 2020] for $d \neq n$

Hierarchical Tree Sorting

Hierarchical Clustering

Beyond [Liu and Moitra, 2020] for $d \neq n$

Hierarchical Tree Sorting

Hierarchical Clustering

Beyond [Liu and Moitra, 2020] for $d \neq n$

Hierarchical Tree Sorting

Hierarchical Clustering

Beyond [Liu and Moitra, 2020] for $d \neq n$

Hierarchical Tree Sorting

Hierarchical Clustering

Beyond [Liu and Moitra, 2020] for $d \neq n$

Hierarchical Tree Sorting

	$G^{(4)}$
$G^{(3)}$	
$G^{(2)}$	
$G^{(1)}$	
$G^{(0)}$	
$G^{(-2)}$	

Hierarchical Clustering

Beyond [Liu and Moitra, 2020] for $d \neq n$

Hierarchical Tree Sorting

$G^{(4)}$
$G^{(3)}$
$G^{(2)}$
$G^{(1)}$
$G^{(0)}$
$G^{(-1)}$
$G^{(-3)}$

Worst Case for a Group $G^{(0)}$ $\left(n \gg d^{1 / 3}\right)$

$\frac{G^{(4)}}{\square} G^{(3)}$
$G^{(2)}$
$G^{(1)}$
$G^{(0)}$
$G^{(-1)}$
$G^{(-3)}$

In $G^{(0)}$, an expert is either in U or in L.

Worst Case for a Group $G^{(0)}$

After Aggregation

 $\left(n \gg d^{1 / 3}\right)$

In $G^{(0)}$, an expert is either in U or in L.
$\frac{\sqrt{r} h}{2}\left(\begin{array}{cccccccc}0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\right)$
1: above the mean (U)
-1 : below the mean (L)

Worst Case for a Group $G^{(0)}$ $\left(n \gg d^{1 / 3}\right)$

After Aggregation

$\frac{\sqrt{r} h}{2}\left(\begin{array}{cccccccc}0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\right)$

1: above the mean (U) -1 : below the mean (L)

Rank one matrix $\sim(\mathrm{PCA}):$ $1^{\text {st }}$ left singular vector: better clustering than local averages in some regimes

Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

$$
n \vee\left(n^{2 / 3} d^{1 / 3}\right)
$$

Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

$$
n \vee\left(n^{2 / 3} d^{1 / 3}\right)
$$

- Better than (UB) of [Liu and Moitra, 2020] (CP + PCA) Improvement when $n<d$:

$$
n \vee d \gg n \vee\left(n^{2 / 3} d^{1 / 3}\right)
$$

Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

$$
n \vee\left(n^{2 / 3} d^{1 / 3}\right)
$$

- Better than (UB) of [Liu and Moitra, 2020] (CP + PCA) Improvement when $n<d$:

$$
n \vee d \gg n \vee\left(n^{2 / 3} d^{1 / 3}\right)
$$

- But not Optimal!

$$
n \vee\left(n^{2 / 3} d^{1 / 3}\right) \gg n \vee\left(n^{3 / 4} d^{1 / 4}\right) .
$$

Summary

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$n d^{1 / 6}$	$n^{3 / 4} d^{1 / 4}$	n
MiniMax-Estim	$n d^{1 / 3}$	$\sqrt{n d}$	n
Global average (UB)	$n \sqrt{d}$	$n \sqrt{d}$	$n \sqrt{d}$
Ext. of LM (UB)	d	d	n
Super ext. of LM	$n d^{1 / 6}$	$n^{2 / 3} d^{1 / 3}$	n

Remark: Super ext. of LM requires a lot of additional work w.r.t. [Liu and Moitra, 2020]

Ideas to achieve $n^{3 / 4} d^{1 / 4}$

Hierarchical Tree Sorting

$\frac{G^{(4)}}{\square} G^{(3)}$
$G^{(2)}$
$G^{(1)}$
$G^{(0)}$
$G^{(-1)}$

From an oblivious Hierarchical Clustering

Ideas to achieve $n^{3 / 4} d^{1 / 4}$

Hierarchical Tree Sorting

To using the Memory of the Tree

Ideas to achieve $n^{3 / 4} d^{1 / 4}$

Hierarchical Tree Sorting

To using the Memory of the Tree

| $V^{(4)}$
 $G^{(3)}$ $G^{(2)}$
 $G^{(1)}$
 $G^{(0)}$
 $G^{(-1)}$ |
| :--- | :--- |

$G^{(0)}$ is sandwiched between \mathcal{V}_{-} and \mathcal{V}_{+}

Two Types of Information

	$G^{(4)}$
\mathcal{V}_{+}	$G^{(3)}$
	$G^{(2)}$
$G_{-}^{(1)}$	
	$G^{(0)}$
	$G^{(-2)}$

$G^{(0)}$ is sandwiched between \mathcal{V}_{-} and \mathcal{V}_{+}

Two Types of Information

	$G^{(4)}$
\mathcal{V}_{+}	$G^{(3)}$
	$G^{(2)}$
$\mathcal{V}_{-}^{(1)}$	
	$G^{(0)}$
	$G^{(-1)}$
	$G^{(-3)}$

$G^{(0)}$ is sandwiched between \mathcal{V}_{-} and \mathcal{V}_{+}

First Type

Removing regions where $G^{(0)}$ is sandwiched

Two Types of Information

	$G^{(4)}$
\mathcal{V}_{+}	$G^{(3)}$
	$G^{(1)}$
$G^{(0)}$	
\mathcal{V}_{-}	$G^{(-1)}$
	$G^{(-2)}$
	$G^{(-3)}$

$G^{(0)}$ is sandwiched between \mathcal{V}_{-} and \mathcal{V}_{+}

Second Type

Better Change-Point Detection

Conclusion of the Method with Memory

Poly. time algo achieving the minimax rates:

	$n \lesssim d^{1 / 3}$	$d^{1 / 3} \lesssim n \lesssim d$	$d \lesssim n$
MiniMax-Perm	$n d^{1 / 6}$	$n^{3 / 4} d^{1 / 4}$	n

Conclusion

For all n, d :

- The rate MiniMax-Perm which is of order $n \vee\left(n^{3 / 4} d^{1 / 4} \wedge n d^{1 / 6}\right)(\mathrm{UB}$ and LB).
- An associated poly.-time ranking method.
- Together with bi-isotonic regression, this provides a poly.-time method for Minimax-Estim.
- Related to [Liu and Moitra, 2020] but new concepts necessary for minimax rate (memory of the tree).
- Setting can be relaxed without problems to partial observations.

Reference: [arXiv:2211.04092] (2022)

Conclusion

For all n, d :

- The rate MiniMax-Perm which is of order $n \vee\left(n^{3 / 4} d^{1 / 4} \wedge n d^{1 / 6}\right)(\mathrm{UB}$ and LB).
- An associated poly.-time ranking method.
- Together with bi-isotonic regression, this provides a poly.-time method for Minimax-Estim.
- Related to [Liu and Moitra, 2020] but new concepts necessary for minimax rate (memory of the tree).
- Setting can be relaxed without problems to partial observations.

Reference: [arXiv:2211.04092] (2022)

Research Directions:

- Removing the isotonicity constraint on questions.
- Unknown answers: -observing labels instead of correctness.

References I

Bradley, R. A. and Terry, M. E. (1952).
Rank analysis of incomplete block designs: I. the method of paired comparisons.

Biometrika, 39(3/4):324-345.
嗇 Chen, P., Gao, C., and Zhang, A. Y. (2022).
Partial recovery for top-k ranking: Optimality of mle and suboptimality of the spectral method.
The Annals of Statistics, 50(3):1618-1652.Chen, Y., Fan, J., Ma, C., and Wang, K. (2019).
Spectral method and regularized mle are both optimal for top-k ranking.
Annals of statistics, 47(4):2204.

References II

Dawid, A. P. and Skene, A. M. (1979).
Maximum likelihood estimation of observer error-rates using the em algorithm.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1):20-28.

Flammarion, N., Mao, C., and Rigollet, P. (2019).
Optimal rates of statistical seriation.
Liu, A. and Moitra, A. (2020).
Better algorithms for estimating non-parametric models in crowd-sourcing and rank aggregation.
In Abernethy, J. and Agarwal, S., editors, Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages 2780-2829. PMLR.

References III

Mao, C., Pananjady, A., and Wainwright, M. J. (2018).
Towards optimal estimation of bivariate isotonic matrices with unknown permutations.
arXiv preprint arXiv:1806.09544.
Pananjady, A. and Samworth, R. J. (2020).
Isotonic regression with unknown permutations: Statistics, computation, and adaptation.
arXiv preprint arXiv:2009.02609.
Shah, N., Balakrishnan, S., Guntuboyina, A., and Wainwright, M. (2016).

Stochastically transitive models for pairwise comparisons: Statistical and computational issues.
In International Conference on Machine Learning, pages 11-20. PMLR.

References IV

Shah, N. B., Balakrishnan, S., and Wainwright, M. J. (2019). Feeling the bern: Adaptive estimators for bernoulli probabilities of pairwise comparisons.

IEEE Transactions on Information Theory, 65(8):4854-4874.
(Isotonic) $-\pi^{*}$

- Isotonicity in experts for an unknown permutation π^{*}
- $M_{i k} \in[0,1]$
- $\left(\varepsilon_{i k}\right)$ independent and

Subgaussian
(Isotonic)- π^{*}

- Isotonicity in experts for an unknown permutation π^{*}
(Bi-isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions: $M_{\cdot k} \leq M_{.(k+1)}$
- $M_{i k} \in[0,1]$
- $\left(\varepsilon_{i k}\right)$ independent and Subgaussian
(Isotonic)- π^{*}
- Isotonicity in experts for an unknown permutation π^{*}
(Bi-isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions: $M_{\cdot k} \leq M_{.(k+1)}$
- $M_{i k} \in[0,1]$
- $\left(\varepsilon_{i k}\right)$ independent and Subgaussian

(Isotonic)- π^{*}

(Bi-isotonic) $-\pi^{*}$

(Bi-isotonic) $-\pi^{*}$

(Isotonic) $-\pi^{*}$

- Isotonicity in
experts for an
unknown
permutation
π^{*}
(Bi-isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot(k+1)}$
(Isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
(Bi-isotonic)-($\left.\pi^{*}, \sigma^{*}\right)$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions for an unknown permutation σ^{*}
(Bi-isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot(k+1)}$
(Isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
(Bi-isotonic)-($\left.\pi^{*}, \sigma^{*}\right)$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions for an unknown permutation σ^{*}
(Bi-isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions: $M_{\cdot k} \leq M_{\cdot(k+1)}$ (known permutation $\left.\sigma^{*}\right)$
(Isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
(Bi-isotonic)-($\left.\pi^{*}, \sigma^{*}\right)$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions for an unknown permutation σ^{*}
(Bi-isotonic) $-\pi^{*}$
- Isotonicity in experts for an unknown permutation π^{*}
- Isotonicity in questions: $M_{\cdot k} \leq M_{.(k+1)}$ (known permutation $\left.\sigma^{*}\right)$

Statistical difficulty:
(Isotonic) $-\pi^{*} \succ\left(\mathrm{Bi}\right.$-isotonic) $-\left(\pi^{*}, \sigma^{*}\right) \succ(\mathrm{Bi}$-isotonic $)-\pi^{*}$

