# Optimal Permutation Estimation in Crowd-Sourcing Problems

#### Emmanuel Pilliat

#### Université de Montpellier and INRAE

# Based on a joint work with **Alexandra Carpentier** (Uni Potsdam) and **Nicolas Verzelen** (INRAE)

March, 21st 2023

[arXiv:2211.04092] (2022)

Minimax and Poly. Time Algo.

## Typical Dataset in Crowd-Sourcing



#### Cifar10H dataset: 10000 images, 10 labels.

## Typical Dataset in Crowd-Sourcing



Cifar10H dataset: 10000 images, 10 labels.

Identification a worker: annotator\_id

## Typical Dataset in Crowd-Sourcing



Cifar10H dataset: 10000 images, 10 labels.

- Identification a worker: annotator\_id
- Evaluation on a given image: correct\_guess

## Typical Dataset in Crowd-Sourcing



Frog (??)

- Identification a worker: annotator\_id
- Evaluation on a given image: correct\_guess

# This Talk

We consider a **ranking** problem:

- Given the observation of the correctness of answers of n experts on d questions,
- ▶ We want to rank the experts according to their ability.

Question: how well can we recover their ranking in a minimax sense?

#### 10 questions

#### 0: Wrong answer 1: Correct answer

#### 10 questions



0: Wrong answer 1: Correct answer

**Bad Experts Good Experts** 

#### 10 questions

4 experts

|   | ( | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | $1 \setminus$ |
|---|---|---|---|---|---|---|---|---|---|---|---------------|
| 3 |   | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1             |
|   |   | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1             |
|   | ( | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 /           |

0: Wrong answer 1: Correct answer

Hard Questions Easy Questions

#### 10 questions



0: Wrong answer 1: Correct answer

This talk: Ranking of Experts

#### 10 questions

4 experts

|    | / | 1 | 0 | T | 0 | 0 | 0 | T | 0 | 1 | 1 |   |
|----|---|---|---|---|---|---|---|---|---|---|---|---|
| ta |   | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |   |
| us |   | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |   |
|    | ĺ | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | / |

0: Wrong answer 1: Correct answer

This talk: **Ranking of Experts** Under **Known Difficulty** of the questions

## Experts/Questions Setting

**Experts**  $i \in \{1, ..., n\}$  and **questions**  $k \in \{1, ..., d\}$ . We observe for all i, k:

 $Y_{ik} \sim \text{Bern}(M_{ik})$ .

1: Correct 0: Wrong

| ( | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1   |
|---|---|---|---|---|---|---|---|---|---|-----|
|   | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1   |
|   | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1   |
|   | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 / |

### Experts/Questions Setting

**Experts**  $i \in \{1, ..., n\}$  and **questions**  $k \in \{1, ..., d\}$ . We observe for all i, k:

 $Y_{ik} \sim \text{Bern}(M_{ik})$ .

1: Correct 0: Wrong

expert i correct at question k

$$\Leftrightarrow Y_{ik} = 1 \ .$$

### Experts/Questions Setting

**Experts**  $i \in \{1, ..., n\}$  and **questions**  $k \in \{1, ..., d\}$ . We observe for all i, k:

 $Y_{ik} \sim \operatorname{Bern}\left(M_{ik}\right)$ .

expert i correct at question k

$$\Leftrightarrow Y_{ik} = 1 \ .$$

1: Correct 0: Wrong

- M<sub>ik</sub> = 1/2: random choice of expert *i* at question k
- ► M<sub>ik</sub> = 1: Expert *i* knows perfectly the answer of question *k*

Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

## Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

▶  $(\varepsilon_{ik})$  i.i.d. subGaussian (e.g. Bernoulli)

#### Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

- ▶  $(\varepsilon_{ik})$  i.i.d. subGaussian (e.g. Bernoulli)
- $M_{ik} \in [0,1]$  for all i, k

#### Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

- ▶  $(\varepsilon_{ik})$  i.i.d. subGaussian (e.g. Bernoulli)
- $\blacktriangleright M_{ik} \in [0,1] \text{ for all } i,k$

#### Parametric Models for M:

- ▶ Questions Equaly Difficult  $\sim M_{ik} = a_i \approx$  [Dawid and Skene, 1979]
- Ability/Difficulty  $\rightsquigarrow M_{ik} = \phi(\alpha_i \beta_k) \approx [\text{Bradley and Terry, 1952}]$

#### Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

- ▶  $(\varepsilon_{ik})$  i.i.d. subGaussian (e.g. Bernoulli)
- $M_{ik} \in [0,1]$  for all i, k

#### Parametric Models for M:

- ▶ Questions Equally Difficult  $\sim M_{ik} = a_i \approx$  [Dawid and Skene, 1979]
- Ability/Difficulty  $\sim M_{ik} = \phi(\alpha_i \beta_k) \approx [\text{Bradley and Terry, 1952}]$

Non-Parametric Models for  $M \approx [Mao et al., 2018]$ 

• Increasing Rows:  $M_{i,k} \leq M_{i,k+1}$ 

#### Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

- ▶  $(\varepsilon_{ik})$  i.i.d. subGaussian (e.g. Bernoulli)
- $M_{ik} \in [0,1]$  for all i, k

#### Parametric Models for M:

- ▶ Questions Equally Difficult  $\sim M_{ik} = a_i \approx$  [Dawid and Skene, 1979]
- Ability/Difficulty  $\sim M_{ik} = \phi(\alpha_i \beta_k) \approx [\text{Bradley and Terry, 1952}]$

#### Non-Parametric Models for $M \approx [Mao et al., 2018]$

- Increasing Rows:  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns up to permutation  $\pi^*$  of rows:  $M_{\pi^*(i),k} \leq M_{\pi^*(i+1),k}$

#### Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

- ▶  $(\varepsilon_{ik})$  i.i.d. subGaussian (e.g. Bernoulli)
- $\blacktriangleright M_{ik} \in [0,1] \text{ for all } i,k$

#### Parametric Models for M:

- ▶ Questions Equally Difficult  $\sim M_{ik} = a_i \approx$  [Dawid and Skene, 1979]
- Ability/Difficulty  $\sim M_{ik} = \phi(\alpha_i \beta_k) \approx [\text{Bradley and Terry, 1952}]$

#### **Non-Parametric Models for** $M \approx [Mao et al., 2018]$

- Increasing Rows:  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns up to permutation  $\pi^*$  of rows:  $M_{\pi^*(i),k} \leq M_{\pi^*(i+1),k}$

### Non Parametric Model

### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

#### Non Parametric Model

#### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

White = 0; Black = 1



Matrix  $M_{\pi^*}$ . (isotonic).

#### Non Parametric Model

#### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

White = 0; Black = 1



Matrix  $M_{\pi^*}$ . (isotonic).

### Non Parametric Model

#### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

White = 0; Black = 1



Matrix M (isotonic up to a permutation of experts).

### Non Parametric Model

#### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

White = 0; Black = 1



Matrix Y (M in noise).

## Non Parametric Model

#### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

Aim

Estimation of  $\pi^*$ .

White = 0; Black = 1



Matrix Y (M in noise).

Minimax and Poly. Time Algo.

# Example with $n, d = 150, M \in [0, 1]$



Minimax and Poly. Time Algo.

# Example with $n, d = 150, M \in [0.25, 0.75]$



# Example with $n, d = 150, M \in [0.4, 0.6]$



## Bi-isotonic ${\cal M}$ - Other representation



Each line  $M_{i,.}$  represents an expert i

Minimax and Poly. Time Algo.

## Bi-isotonic M - Other representation



Each line  $M_{i,.}$  represents an expert i

## Bi-isotonic M - Other representation



Each line  $M_{i,.}$  represents an expert i

## Non Parametric Model

#### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - ▶  $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

## Error Measures

## Non Parametric Model

#### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - ▶  $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

## Error Measures

# Permutation loss For an estimator $\hat{\pi}$ of $\pi^*$

$$\text{Perm-Loss} := \|M_{\hat{\pi}} - M_{\pi^*}\|_F^2$$

$$=\sum_{i=1}^{n}\sum_{k=1}^{d}(M_{\pi(i),k}-M_{\pi^{*}(i),k})^{2}$$

### Non Parametric Model

#### Observation Model

- $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 
  - ▶  $(\varepsilon_{ik})$  i.i.d. subGaussian
  - $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

### Error Measures

Permutation loss

For an estimator  $\hat{\pi}$  of  $\pi^*$ 

Perm-Loss :=  $||M_{\hat{\pi}} - M_{\pi^*}||_F^2$ 



If the two lines are misclassified:  $\label{eq:Perm-Loss} {\rm Perm-Loss} = 2rh^2$
### Non Parametric Model

### Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

- $(\varepsilon_{ik})$  i.i.d. subGaussian
- $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

### Error Measures

Permutation loss

For an estimator  $\hat{\pi}$  of  $\pi^*$ 

Perm-Loss :=  $||M_{\hat{\pi}} - M_{\pi^*}||_F^2$ 

Estimation loss For an estimator  $\hat{M}$  of M

Estim-Loss :=  $\|\hat{M} - M\|_F^2$ .

### Non Parametric Model

### Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

- $(\varepsilon_{ik})$  i.i.d. subGaussian
- $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

### Error Measures

Permutation loss

For an estimator  $\hat{\pi}$  of  $\pi^*$ 

Perm-Loss :=  $||M_{\hat{\pi}} - M_{\pi^*}||_F^2$ 

Estimation loss For an estimator  $\hat{M}$  of M

Estim-Loss :=  $\|\hat{M} - M\|_F^2$ .

#### Aim

Estimation of  $\pi^*$ .

### Non Parametric Model

### Observation Model

 $Y = M + \varepsilon \in \mathbb{R}^{n \times d}$ 

- $(\varepsilon_{ik})$  i.i.d. subGaussian
- $M_{ik} \in [0,1]$  for all i, k

# Shape Constraints (Bi-isotonicity):

- Increasing Rows  $M_{i,k} \leq M_{i,k+1}$
- Increasing Columns for an unknown permutation π\*

### Error Measures

Permutation loss

For an estimator  $\hat{\pi}$  of  $\pi^*$ 

Perm-Loss :=  $||M_{\hat{\pi}} - M_{\pi^*}||_F^2$ 

Estimation loss For an estimator  $\hat{M}$  of M

Estim-Loss :=  $\|\hat{M} - M\|_F^2$ .

#### Aim

Estimation of  $\pi^*$ .

Minimax and Poly. Time Algo.

### Error Measures

Permutation loss

For an estimator  $\hat{\pi}$  of  $\pi^*$ 

Perm-Loss :=  $||M_{\hat{\pi}} - M_{\pi^*}||_F^2$ .

Estimation loss

For an estimator  $\hat{M}$  of M

 $\text{Estim-Loss} := \|\hat{M} - M\|_F^2.$ 

Aim

Estimation of  $\pi^*$ .

### MiniMax-Risk

### Error Measures

Permutation loss

For an estimator  $\hat{\pi}$  of  $\pi^*$ 

Perm-Loss :=  $||M_{\hat{\pi}} - M_{\pi^*}||_F^2$ .

Estimation loss For an estimator  $\hat{M}$  of M

 $\text{Estim-Loss} := \|\hat{M} - M\|_F^2.$ 

Aim

Estimation of  $\pi^*$ .

### MiniMax-Risk

Max-Risk and MiniMax-Risk

If  $\hat{\pi}$  is an estimator of  $\pi^*$ , we define

Max-Perm $(\hat{\pi})$ 

 $= \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2],$ 

 $MiniMax-Perm = \inf_{\hat{\pi}} (Max-Perm(\hat{\pi}))$ 

### Error Measures

Permutation loss

For an estimator  $\hat{\pi}$  of  $\pi^*$ 

Perm-Loss :=  $||M_{\hat{\pi}} - M_{\pi^*}||_F^2$ .

Estimation loss For an estimator  $\hat{M}$  of M

 $\text{Estim-Loss} := \|\hat{M} - M\|_F^2.$ 

Aim

Estimation of  $\pi^*$ .

### MiniMax-Risk

Max-Risk and MiniMax-Risk

If  $\hat{\pi}$  is an estimator of  $\pi^*$ , we define

 $\begin{aligned} \text{Max-Perm}(\hat{\pi}) \\ &= \sup_{M,\pi^*} \mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2], \end{aligned}$ 

 $MiniMax-Perm = \inf_{\hat{\pi}} (Max-Perm(\hat{\pi}))$ 

Define similarly Max-Estim and MiniMax-Estim for estimation of M with  $\hat{M}$ .

#### Related rectangular problems:

• Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations  $\pi^*$  and  $\sigma^*$  of rows and columns. Objective: ranking the experts and the questions.

#### Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations  $\pi^*$  and  $\sigma^*$  of rows and columns. Objective: ranking the experts and the questions.
- ▶ Column isotony [Flammarion et al., 2019]

#### Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations  $\pi^*$  and  $\sigma^*$  of rows and columns. Objective: ranking the experts and the questions.
- ▶ Column isotony [Flammarion et al., 2019]

**Ranking players in a tournament**: M is a  $n \times n$  matrix with symmetries.

▶ Non-parametric Models SST [Shah et al., 2016]

#### Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations  $\pi^*$  and  $\sigma^*$  of rows and columns. Objective: ranking the experts and the questions.
- ▶ Column isotony [Flammarion et al., 2019]

**Ranking players in a tournament**: M is a  $n \times n$  matrix with symmetries.

- ▶ Non-parametric Models SST [Shah et al., 2016]
- Parametric Models: Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2022])

#### Related rectangular problems:

- Two permutations [Mao et al., 2018, Shah et al., 2019] M is bi-isotonic up to permutations  $\pi^*$  and  $\sigma^*$  of rows and columns. Objective: ranking the experts and the questions.
- ▶ Column isotony [Flammarion et al., 2019]

**Ranking players in a tournament**: M is a  $n \times n$  matrix with symmetries.

- ▶ Non-parametric Models SST [Shah et al., 2016]
- Parametric Models: Bradley-Luce-Terry (e.g. [Chen et al., 2019, Chen et al., 2022])

Short story:

- ▶ No computational gap for *parametric models* (BLT, noisy sorting)
- Mostly unknown for *non-parametric* models: computational gaps were conjectured

# Main questions

### 1. Is there a computational-statistical gap?

# Main questions

- 1. Is there a **computational-statistical gap**?
- 2. Is Estimating  $\pi^*$  much easier than estimating M?

# Main questions

- 1. Is there a computational-statistical gap?
- 2. Is Estimating  $\pi^*$  much easier than estimating M?

Our Contributions

For all n, d:

- ▶ Control of MiniMax-Perm
- ▶ A polynomial-time procedure achieves MiniMax-Perm

# Existing Methods

- ▶ Non-Polynomial Time Methods with Least Square
- ▶ Simple Global Average Comparison
- ▶ [Liu and Moitra, 2020] based on Hierarchical Clustering

## Least Square on Bi-isotinic Matrix



- Perm the set of all permutation of {1,...,n}
- Mon be the set of all bi-isotonic matrix in [0, 1]

#### Least-square estimator

$$(\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}) = \arg\min_{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}} \|\widetilde{M}_{\widetilde{\pi}} - Y\|_{F}^{2}$$

- Perm the set of all permutation of {1,...,n}
- Mon be the set of all bi-isotonic matrix in [0, 1]

Least-square estimator

 $(\hat{M}^{\text{LS}}, \hat{\pi}^{\text{LS}}) = \arg\min_{\widetilde{M} \in \text{Mon}, \widetilde{\pi} \in \text{Perm}} \|\widetilde{M}_{\widetilde{\pi}} - Y\|_F^2$ 



Matrix  $M_{\pi^*,.}$  (bi-isotonic).

- Perm the set of all permutation of {1,...,n}
- Mon be the set of all bi-isotonic matrix in [0, 1]

#### Least-square estimator

 $(\hat{M}^{\text{LS}}, \hat{\pi}^{\text{LS}}) = \arg\min_{\widetilde{M} \in \text{Mon}, \widetilde{\pi} \in \text{Perm}} \|\widetilde{M}_{\widetilde{\pi}} - Y\|_F^2$ 



Matrix M.

- Perm the set of all permutation of {1,...,n}
- Mon be the set of all bi-isotonic matrix in [0, 1]

#### Least-square estimator

$$(\widehat{M}^{\mathrm{LS}}, \widehat{\pi}^{\mathrm{LS}}) = \arg\min_{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}} \|\widetilde{M}_{\widetilde{\pi}} - Y\|_{F}^{2}$$



Matrix Y.

- Perm the set of all permutation of {1,...,n}
- Mon be the set of all bi-isotonic matrix in [0, 1]

#### Least-square estimator

$$\begin{split} (\hat{M}^{\mathrm{LS}}, \hat{\pi}^{\mathrm{LS}}) = \\ & \operatorname*{arg\,min}_{\widetilde{M} \in \mathrm{Mon}, \widetilde{\pi} \in \mathrm{Perm}} \| \widetilde{M}_{\widetilde{\pi}} - Y \|_{F}^{2} \end{split}$$

No know polynomial-time method to compute  $(\hat{M}^{\text{LS}}, \hat{\pi}^{\text{LS}})$ 

Least-square guarantees

 $(\hat{\pi}^{\text{LS}}, \hat{M}^{\text{LS}})$  satisfy -up to polylogs:

$$\begin{aligned} \text{Max-Estim}(\hat{M}^{\text{LS}}) &\lesssim n \lor (\sqrt{nd} \land nd^{1/3}) \\ \text{Max-Perm}(\hat{\pi}^{\text{LS}}) &\lesssim n \lor (\sqrt{nd} \land nd^{1/3}) \end{aligned}$$

```
Least-square guarantees
```

 $(\hat{\pi}^{\text{LS}}, \hat{M}^{\text{LS}})$  satisfy -up to polylogs:

$$\begin{aligned} \text{Max-Estim}(\hat{M}^{\text{LS}}) &\lesssim n \lor (\sqrt{nd} \land nd^{1/3}) \\ \text{Max-Perm}(\hat{\pi}^{\text{LS}}) &\lesssim n \lor (\sqrt{nd} \land nd^{1/3}) \end{aligned}$$

#### **Entropy Arguments**:

▶ n! permutations:  $n \approx \log(n!)$ 

```
Least-square guarantees
```

 $(\hat{\pi}^{\text{LS}}, \hat{M}^{\text{LS}})$  satisfy -up to polylogs:

$$\begin{aligned} \text{Max-Estim}(\hat{M}^{\text{LS}}) &\lesssim n \lor (\sqrt{nd} \land nd^{1/3}) \\ \text{Max-Perm}(\hat{\pi}^{\text{LS}}) &\lesssim n \lor (\sqrt{nd} \land nd^{1/3}) \end{aligned}$$

#### **Entropy Arguments**:

- ▶ n! permutations:  $n \approx \log(n!)$
- ▶ Covering of bi-isotonic matrices: log-size  $\approx \sqrt{nd} \wedge nd^{1/3}$

```
Least-square guarantees
```

 $(\hat{\pi}^{\text{LS}}, \hat{M}^{\text{LS}})$  satisfy -up to polylogs:

$$\begin{aligned} \text{Max-Estim}(\hat{M}^{\text{LS}}) &\lesssim n \lor (\sqrt{nd} \land nd^{1/3}) \\ \text{Max-Perm}(\hat{\pi}^{\text{LS}}) &\lesssim n \lor (\sqrt{nd} \land nd^{1/3}) \end{aligned}$$

#### Entropy Arguments:

- ▶ n! permutations:  $n \approx \log(n!)$
- ▶ Covering of bi-isotonic matrices: log-size  $\asymp \sqrt{nd} \wedge nd^{1/3}$

### Remarks:

- ▶ MiniMax-Estim Optimal [Mao et al., 2018]
- ▶ not proven to be MiniMax-Perm Optimal

# Summary

|               | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm  | ??                   | ??                              | n              |
| MiniMax-Estim | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |

But algo. not polynomial time.

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]





Matrix M.

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

Compute expert *i* average performances on all questions:  $\overline{V} = \begin{pmatrix} 1 \\ N \end{pmatrix} V$ 

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^{d} Y_{ik}$$



Matrix Y (M in noise).

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

- Compute expert *i* average performances on all questions:  $\overline{Y}_i = \frac{1}{d} \sum_{k=1}^d Y_{ik}$
- Rank experts according to their average: 
   <sup><sup>av</sup></sup>



Matrix  $Y_{\hat{\pi}^{\mathrm{av}}}$  (*M* in noise).

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

- Compute expert *i* average performances on all questions:  $\overline{Y}_i = \frac{1}{d} \sum_{i=1}^{d} Y_{ik}$
- Rank experts according to their average: 
   <sup><sup>av</sup></sup>

Guarantees on  $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \simeq n\sqrt{d}$ .



Matrix  $Y_{\hat{\pi}^{\mathrm{av}}}$  (*M* in noise).

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

 Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^{d} Y_{ik}$$

► Rank experts according to their average:  $\hat{\pi}^{av}$ 

Guarantees on  $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \simeq n\sqrt{d}$ .

### Idea of Proof

Perfect expert on  $\sqrt{d}$  questions VS random:

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

 Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^{u} Y_{ik}$$

► Rank experts according to their average:  $\hat{\pi}^{av}$ 

Guarantees on  $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \simeq n\sqrt{d}$ .

### Idea of Proof

Perfect expert on  $\sqrt{d}$  questions VS random:

$$Y_{1,.} = (01101\dots 10\underbrace{111111111})$$

 $Y_{2,.} = (01000...01\underbrace{1010010100}_{\sim\sqrt{d}})$ 

(Example of Observations)

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

 Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^{\omega} Y_{ik}$$

► Rank experts according to their average:  $\hat{\pi}^{av}$ 

Guarantees on  $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \simeq n\sqrt{d}$ .

### Idea of Proof

Perfect expert on  $\sqrt{d}$ questions VS random:  $Y_{1,.} = (01101...10\underbrace{111111111})$ 

$$Y_{2,.} = (01000...01\underbrace{1010010100}_{\sim\sqrt{d}})$$

1 and 2 cannot be distinguished with their average: Max-Perm( $\hat{\pi}^{av}$ )  $\approx \sqrt{d}$ 

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

 Compute expert i average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^{\omega} Y_{ik}$$

► Rank experts according to their average:  $\hat{\pi}^{av}$ 

Guarantees on  $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \simeq n\sqrt{d}$ .

### Idea of Proof

Perfect expert on  $\sqrt{d}$  questions VS random:

$$Y_{1,.} = (01101\dots10\underbrace{111111111})$$

$$Y_{2,.} = (01000...01\underbrace{1010010100}_{\sim\sqrt{d}})$$

1 and 2 cannot be distinguished with their average: Max-Perm( $\hat{\pi}^{av}$ )  $\approx \sqrt{d}$ 

► Lower Bound for  $\hat{\pi}^{av}$ : There exists M s.t. Max-Perm $(\hat{\pi}^{av})$  $\gtrsim n\sqrt{d}$ 

Global Average Comparison [Pananjady and Samworth, 2020, Shah et al., 2019]

Method:

 Compute expert *i* average performances on all questions:

$$\overline{Y}_i = \frac{1}{d} \sum_{k=1}^{\omega} Y_{ik}$$

► Rank experts according to their average:  $\hat{\pi}^{av}$ 

Guarantees on  $\hat{\pi}^{av}$ Max-Perm $(\hat{\pi}^{av}) \simeq n\sqrt{d}$ .

### Idea of Proof

Perfect expert on  $\sqrt{d}$ questions VS random:  $Y_{1,.} = (01101...10111111111)$ 

$$Y_{2,.} = (01000...01\underbrace{1010010100}_{\sim\sqrt{d}})$$

1 and 2 cannot be distinguished with their average: Max-Perm( $\hat{\pi}^{av}$ )  $\simeq \sqrt{d}$ 

• Upper Bound: For any  $M, \pi^*, \text{Max-Perm}(\hat{\pi}^{\text{av}}) \leq n\sqrt{d}$ 

# Summary

|                     | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm        | ??                   | ??                              | n              |
| MiniMax-Estim       | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |
| Global average (UB) | $n\sqrt{d}$          | $n\sqrt{d}$                     | $n\sqrt{d}$    |

### Remarks:

- Algo. for rates in MiniMax-Estim and MiniMax-Perm not in polynomial time.
- ▶ One to one comparisons give UB but sub-optimal whenever  $d \gtrsim 1$ .
CP and Hierarchical Clustering Based Algo. [Liu and Moitra, 2020]

[Liu and Moitra, 2020] **consider** only the case d = n, and provide a **poly. time** algo. returning  $\hat{\pi}^{(LM)}$  such that

Max-Perm $(\hat{\pi}^{(LM)}) \lesssim n.$ 

CP and Hierarchical Clustering Based Algo. [Liu and Moitra, 2020]

[Liu and Moitra, 2020] **consider** only the case d = n, and provide a **poly. time** algo. returning  $\hat{\pi}^{(LM)}$  such that

Max-Perm $(\hat{\pi}^{(LM)}) \lesssim n.$ 

One can push further their analysis for  $d \neq n$  and get  $n \lor d$  through this. **Optimal** for d = n in which case

MiniMax-Perm  $\approx n$ .

Overview of Existing Methods

Minimax and Poly. Time Algo.

CP and Hierarchical Clustering Based Algo. [Liu and Moitra, 2020]

[Liu and Moitra, 2020] **consider** only the case d = n, and provide a **poly. time** algo. returning  $\hat{\pi}^{(LM)}$  such that

Max-Perm $(\hat{\pi}^{(LM)}) \lesssim n.$ 

One can push further their analysis for  $d \neq n$  and get  $n \lor d$  through this. **Optimal** for d = n in which case

MiniMax-Perm  $\asymp n$ .



Localisation through CP detection.

Overview of Existing Methods

Minimax and Poly. Time Algo.

CP and Hierarchical Clustering Based Algo. [Liu and Moitra, 2020]

[Liu and Moitra, 2020] **consider** only the case d = n, and provide a **poly. time** algo. returning  $\hat{\pi}^{(LM)}$  such that

Max-Perm $(\hat{\pi}^{(LM)}) \lesssim n.$ 

One can push further their analysis for  $d \neq n$  and get  $n \lor d$  through this. **Optimal** for d = n in which case

MiniMax-Perm  $\approx n$ .



Localisation through CP detection.

Hierarchical Tree Sorting



Hierarchical clustering.

# Summary

|                     | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm        | ??                   | ??                              | n              |
| MiniMax-Estim       | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |
| Global average (UB) | $n\sqrt{d}$          | $n\sqrt{d}$                     | $n\sqrt{d}$    |
| Ext. of LM (UB)     | d                    | d                               | n              |

### Remarks:

- Poly. time algo of LM achieves MiniMax-Perm and MiniMax-Estim for d = n
- ▶ This algorithm can be analysed in a more refined way for  $d \neq n$  but not done in [Liu and Moitra, 2020].

# Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022] - accepted in AOS

Assume we have polylog samples. There exists a estimator  $\hat{\pi}$  of  $\pi^*$  which is poly. time and minimax optimal

 $\mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2] \lesssim n \lor (n^{3/4} d^{1/4} \land n d^{1/6}) \asymp \text{MiniMax-Perm} .$ 

# Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022] - accepted in AOS

Assume we have polylog samples. There exists a estimator  $\hat{\pi}$  of  $\pi^*$  which is poly. time and minimax optimal

 $\mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2] \lesssim n \vee (n^{3/4} d^{1/4} \wedge n d^{1/6}) \asymp \text{MiniMax-Perm} .$ 

|               | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm  | $nd^{1/6}$           | $n^{3/4}d^{1/4}$                | n              |
| MiniMax-Estim | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |

# Minimax and Poly. Time

Theorem [P., Carpentier, Verzelen, 2022] - accepted in AOS

Assume we have polylog samples. There exists a estimator  $\hat{\pi}$  of  $\pi^*$  which is poly. time and minimax optimal

 $\mathbb{E}[\|M_{\hat{\pi}} - M_{\pi^*}\|_F^2] \lesssim n \vee (n^{3/4} d^{1/4} \wedge n d^{1/6}) \asymp \text{MiniMax-Perm} .$ 

|               | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm  | $nd^{1/6}$           | $n^{3/4}d^{1/4}$                | n              |
| MiniMax-Estim | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |

Can be combined with bi-isotonic regression to have a **poly. time MiniMax-Estim algo**!

# Summary

Poly. time algo achieving the minimax rates:

|               | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm  | $nd^{1/6}$           | $n^{3/4}d^{1/4}$                | n              |
| MiniMax-Estim | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |

# Uniform distance between two experts



Global average comparison is optimal: Constant Perm-Risk - Confusion only if  $h \lesssim 1/\sqrt{d}$ .

# Localised distance between two experts





Global average good.



Global average bad  $\rightarrow$  need to **localise**.



Global average good.



# Global average bad $\rightarrow$ need to **localise**.

### Idea:

 Estimate by a change point (CP) method windows where any of the two experts changes by more than h.



Global average good.



Global average bad  $\rightarrow$  need to **localise**.

### Idea:

- Estimate by a change point (CP) method windows where any of the two experts changes by more than h.
- Compute local average on these windows.



Global average good.



Global average bad  $\rightarrow$  need to **localise**.

### Idea:

- Estimate by a change point (CP) method windows where any of the two experts changes by more than h.
- Compute local average on these windows.

[Liu and Moitra, 2020] introduced this idea of localisation with CP - in a different context and regime.

### Toward a Worst Case Scenario



Overview of Existing Methods

### Toward a Worst Case Scenario

#### Idea:

► A CP of size h can be detected on a window of 1/h<sup>2</sup> questions.



Overview of Existing Methods

### Toward a Worst Case Scenario

#### Idea:

- ► A CP of size h can be detected on a window of 1/h<sup>2</sup> questions.
- At most 1/h of these CP, since  $M \in [0, 1]$



Minimax and Poly. Time Algo.

### Toward a Worst Case Scenario



#### Idea:

- ► A CP of size h can be detected on a window of 1/h<sup>2</sup> questions.
- At most 1/h of these CP, since  $M \in [0, 1]$
- If they are indistinguishable at scale h:

$$\|M_{1\cdot} - M_{2\cdot}\|_{2}^{2} \le h \|M_{1\cdot} - M_{2\cdot}\|_{1}$$
$$\le h \sqrt{\frac{1}{h^{2}} \frac{1}{h} \wedge d}$$
$$\le d^{1/6} .$$

### Toward a Worst Case Scenario



#### Idea:

- ► A CP of size h can be detected on a window of 1/h<sup>2</sup> questions.
- At most 1/h of these CP, since  $M \in [0, 1]$
- If they are indistinguishable at scale h:

$$\|M_{1\cdot} - M_{2\cdot}\|_{2}^{2} \le h \|M_{1\cdot} - M_{2\cdot}\|_{1}$$
$$\le h \sqrt{\frac{1}{h^{2}} \frac{1}{h} \wedge d}$$
$$\le d^{1/6} .$$

•  $d^{1/6}$  is optimal for two experts: MiniMax-Perm  $\approx d^{1/6}$ .

### Toward a Worst Case Scenario



#### Idea:

- ► A CP of size h can be detected on a window of 1/h<sup>2</sup> questions.
- At most 1/h of these CP, since  $M \in [0, 1]$
- If they are indistinguishable at scale h:

$$\|M_{1\cdot} - M_{2\cdot}\|_{2}^{2} \leq h \|M_{1\cdot} - M_{2\cdot}\|_{1}$$
$$\leq h \sqrt{\frac{1}{h^{2}} \frac{1}{h} \wedge d}$$
$$\leq d^{1/6} .$$

- $d^{1/6}$  is optimal for two experts: MiniMax-Perm  $\approx d^{1/6}$ .
- For any n (UB): MiniMax-Perm  $\leq nd^{1/6}$ .



### Poly. time algo achieving the minimax rates:

|                     | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm        | $nd^{1/6}$           | $n^{3/4}d^{1/4}$                | n              |
| MiniMax-Estim       | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |
| Global average (UB) | $n\sqrt{d}$          | $n\sqrt{d}$                     | $n\sqrt{d}$    |
| Ext. of LM (UB)     | d                    | d                               | n              |

Ext. of LM (UB) extends [Liu and Moitra, 2020] to  $d \neq n$ 



### Poly. time algo achieving the minimax rates:

|                     | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm        | $nd^{1/6}$           | $n^{3/4}d^{1/4}$                | n              |
| MiniMax-Estim       | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |
| Global average (UB) | $n\sqrt{d}$          | $n\sqrt{d}$                     | $n\sqrt{d}$    |
| Ext. of LM (UB)     | d                    | d                               | n              |

Ext. of LM (UB) extends [Liu and Moitra, 2020] to  $d \neq n$ 



# Hierarchical Clustering Beyond [Liu and Moitra, 2020] for $d \neq n$

**Hierarchical Tree Sorting** 



# Hierarchical Clustering Beyond [Liu and Moitra, 2020] for $d \neq n$

Hierarchical Tree Sorting













| $G^{(4)}$  |
|------------|
| $G^{(3)}$  |
|            |
| $G^{(1)}$  |
|            |
| $G^{(-1)}$ |
| $G^{(-2)}$ |
| $G^{(-3)}$ |



| $G^{(4)}$  |
|------------|
| $G^{(3)}$  |
| $G^{(2)}$  |
| $G^{(1)}$  |
| $G^{(0)}$  |
| $G^{(-1)}$ |
| $G^{(-2)}$ |
| $G^{(-3)}$ |

# Worst Case for a Group $G^{(0)}$ $(n \gg d^{1/3})$



| $G^{(4)}$  |
|------------|
| $G^{(3)}$  |
| $G^{(2)}$  |
| $G^{(1)}$  |
| $G^{(0)}$  |
| $G^{(-1)}$ |
|            |
| $G^{(-3)}$ |

In  $G^{(0)}$ , an expert is either in Uor in L.

Overview of Existing Methods

## Worst Case for a Group $G^{(0)}$ $(n \gg d^{1/3})$

After Aggregation

1 -



$$\overset{h}{=} \begin{pmatrix} 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

In  $G^{(0)}$ , an expert is either in Uor in L. 1: above the mean (U)-1: below the mean (L) Overview of Existing Methods

## Worst Case for a Group $G^{(0)}$ $(n \gg d^{1/3})$

After Aggregation

1 -



In  $G^{(0)}$ , an expert is either in Uor in L.

$$\underbrace{h}_{0} \begin{pmatrix} 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

1: above the mean (U)-1: below the mean (L)

Rank one matrix  $\sim$  (PCA): 1<sup>st</sup> left singular vector: better clustering than local averages in some regimes

# Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

 $n \vee (n^{2/3} d^{1/3})$  .

# Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

 $n \vee (n^{2/3} d^{1/3})$  .

▶ Better than (UB) of [Liu and Moitra, 2020] (CP + PCA) - Improvement when n < d:

 $n \lor d \gg n \lor (n^{2/3} d^{1/3})$  .

# Beyond [Liu and Moitra, 2020] for $d \neq n$

The corresponding Max-Perm is upper bounded by

 $n \vee (n^{2/3} d^{1/3})$  .

▶ Better than (UB) of [Liu and Moitra, 2020] (CP + PCA) - Improvement when n < d:

$$n \lor d \gg n \lor (n^{2/3} d^{1/3})$$
 .

▶ But not Optimal !

$$n \vee (n^{2/3} d^{1/3}) \gg n \vee (n^{3/4} d^{1/4})$$
 .
# Summary

#### Poly. time algo achieving the minimax rates:

|                     | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|---------------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm        | $nd^{1/6}$           | $n^{3/4}d^{1/4}$                | n              |
| MiniMax-Estim       | $nd^{1/3}$           | $\sqrt{nd}$                     | n              |
| Global average (UB) | $n\sqrt{d}$          | $n\sqrt{d}$                     | $n\sqrt{d}$    |
| Ext. of LM (UB)     | d                    | d                               | n              |
| Super ext. of LM    | $nd^{1/6}$           | $n^{2/3}d^{1/3}$                | n              |

**Remark:** Super ext. of LM requires a lot of additional work w.r.t. [Liu and Moitra, 2020]

# Ideas to achieve $n^{3/4}d^{1/4}$



| $G^{(4)}$  |
|------------|
| $G^{(3)}$  |
| $G^{(2)}$  |
| $G^{(1)}$  |
| $G^{(0)}$  |
| $G^{(-1)}$ |
| $G^{(-2)}$ |
| $G^{(-3)}$ |

### From an oblivious Hierarchical Clustering

# Ideas to achieve $n^{3/4}d^{1/4}$





#### To using the Memory of the Tree

# Ideas to achieve $n^{3/4}d^{1/4}$



To using the Memory of the Tree

|                   | $G^{(4)}$  |
|-------------------|------------|
|                   | $G^{(3)}$  |
| $\mathcal{V}_+$   | $G^{(2)}$  |
|                   | $G^{(1)}$  |
|                   | $G^{(0)}$  |
| $\mathcal{V}_{-}$ | $G^{(-1)}$ |
|                   | $G^{(-2)}$ |
|                   | $G^{(-3)}$ |

 $G^{(0)}$  is sandwiched between  $\mathcal{V}_{-}$ and  $\mathcal{V}_{+}$ 

### Two Types of Information

|                   | $G^{(4)}$  |
|-------------------|------------|
|                   | $G^{(3)}$  |
| $\mathcal{V}_+$   | $G^{(2)}$  |
|                   | $G^{(1)}$  |
|                   | $G^{(0)}$  |
| $\mathcal{V}_{-}$ | $G^{(-1)}$ |
|                   | $G^{(-2)}$ |
|                   | $G^{(-3)}$ |

 $G^{(0)}$  is sandwiched between  $\mathcal{V}_{-}$ and  $\mathcal{V}_{+}$ 

### Two Types of Information

## First Type

|                   | $G^{(4)}$  |
|-------------------|------------|
|                   | $G^{(3)}$  |
| $\mathcal{V}_+$   | $G^{(2)}$  |
|                   | $G^{(1)}$  |
|                   | $G^{(0)}$  |
| $\mathcal{V}_{-}$ | $G^{(-1)}$ |
|                   | $G^{(-2)}$ |
|                   | $G^{(-3)}$ |

 $G^{(0)}$  is sandwiched between  $\mathcal{V}_{-}$ and  $\mathcal{V}_{+}$ 



Removing regions where  $G^{(0)}$  is sandwiched

### Two Types of Information

### Second Type

|                   | $G^{(4)}$  |
|-------------------|------------|
|                   | $G^{(3)}$  |
| $\mathcal{V}_+$   | $G^{(2)}$  |
|                   | $G^{(1)}$  |
|                   | $G^{(0)}$  |
| $\mathcal{V}_{-}$ | $G^{(-1)}$ |
|                   | $G^{(-2)}$ |
|                   | $G^{(-3)}$ |

 $G^{(0)}$  is sandwiched between  $\mathcal{V}_{-}$ and  $\mathcal{V}_{+}$ 



#### Better Change-Point Detection

# Conclusion of the Method with Memory

#### Poly. time algo achieving the minimax rates:

|              | $n \lesssim d^{1/3}$ | $d^{1/3} \lesssim n \lesssim d$ | $d \lesssim n$ |
|--------------|----------------------|---------------------------------|----------------|
| MiniMax-Perm | $nd^{1/6}$           | $n^{3/4}d^{1/4}$                | n              |

# Conclusion

For all n, d:

- ▶ The rate MiniMax-Perm which is of order  $n \lor (n^{3/4} d^{1/4} \land n d^{1/6})$  (UB and LB).
- ▶ An associated poly.-time ranking method.
- ▶ Together with bi-isotonic regression, this provides a poly.-time method for Minimax-Estim.
- Related to [Liu and Moitra, 2020] but new concepts necessary for minimax rate (memory of the tree).
- ▶ Setting can be relaxed without problems to partial observations.

**Reference**: [arXiv:2211.04092] (2022)

# Conclusion

For all n, d:

- ▶ The rate MiniMax-Perm which is of order  $n \lor (n^{3/4} d^{1/4} \land n d^{1/6})$  (UB and LB).
- ▶ An associated poly.-time ranking method.
- ▶ Together with bi-isotonic regression, this provides a poly.-time method for Minimax-Estim.
- Related to [Liu and Moitra, 2020] but new concepts necessary for minimax rate (memory of the tree).
- ▶ Setting can be relaxed without problems to partial observations.

**Reference**: [arXiv:2211.04092] (2022)

#### **Research Directions**:

- Removing the isotonicity constraint on questions.
- ▶ Unknown answers: -observing labels instead of correctness.

# References I



Rank analysis of incomplete block designs: I. the method of paired comparisons.

*Biometrika*, 39(3/4):324-345.



Chen, P., Gao, C., and Zhang, A. Y. (2022).

Partial recovery for top-k ranking: Optimality of mle and suboptimality of the spectral method.

The Annals of Statistics, 50(3):1618–1652.

Chen, Y., Fan, J., Ma, C., and Wang, K. (2019).

Spectral method and regularized mle are both optimal for top-k ranking.

Annals of statistics, 47(4):2204.

# References II

Dawid, A. P. and Skene, A. M. (1979).

Maximum likelihood estimation of observer error-rates using the em algorithm.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1):20–28.

- Flammarion, N., Mao, C., and Rigollet, P. (2019). Optimal rates of statistical seriation.

Liu, A. and Moitra, A. (2020).

Better algorithms for estimating non-parametric models in crowd-sourcing and rank aggregation.

In Abernethy, J. and Agarwal, S., editors, *Proceedings of Thirty Third Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pages 2780–2829. PMLR.

# References III

 Mao, C., Pananjady, A., and Wainwright, M. J. (2018).
 Towards optimal estimation of bivariate isotonic matrices with unknown permutations.

arXiv preprint arXiv:1806.09544.

Pananjady, A. and Samworth, R. J. (2020).

Isotonic regression with unknown permutations: Statistics, computation, and adaptation.

arXiv preprint arXiv:2009.02609.

Shah, N., Balakrishnan, S., Guntuboyina, A., and Wainwright, M. (2016).

Stochastically transitive models for pairwise comparisons: Statistical and computational issues.

In International Conference on Machine Learning, pages 11–20. PMLR.

# References IV



Shah, N. B., Balakrishnan, S., and Wainwright, M. J. (2019). Feeling the bern: Adaptive estimators for bernoulli probabilities of pairwise comparisons.

IEEE Transactions on Information Theory, 65(8):4854–4874.

### (Isotonic)- $\pi^*$

 Isotonicity in experts for an unknown permutation π\*

- ▶  $M_{ik} \in [0, 1]$
- $(\varepsilon_{ik})$  independent and Subgaussian

### (Isotonic)- $\pi^*$

 Isotonicity in experts for an unknown permutation π\*

- ▶  $M_{ik} \in [0, 1]$
- $(\varepsilon_{ik})$  independent and Subgaussian

- Isotonicity in experts for an unknown permutation π\*
- ► Isotonicity in questions: M<sub>·k</sub> ≤ M<sub>·(k+1)</sub>
- $\blacktriangleright M_{ik} \in [0,1]$
- $(\varepsilon_{ik})$  independent and Subgaussian

### (Isotonic)- $\pi^*$

 Isotonicity in experts for an unknown permutation π\*

- ▶  $M_{ik} \in [0, 1]$
- $(\varepsilon_{ik})$  independent and Subgaussian

- Isotonicity in experts for an unknown permutation π\*
- Isotonicity in questions:  $M_{\cdot k} \leq M_{\cdot (k+1)}$
- $\blacktriangleright M_{ik} \in [0,1]$
- $(\varepsilon_{ik})$  independent and Subgaussian

Introduction 000000000000000 Overview of Existing Methods

## (Isotonic)- $\pi^*$





Introduction 0000000000000000 Overview of Existing Methods

(Isotonic)- $\pi^*$ 





### (Isotonic)- $\pi^*$

 Isotonicity in experts for an unknown permutation π\*

- Isotonicity in experts for an unknown permutation π\*
- ► Isotonicity in questions:  $M_{k} ≤ M_{(k+1)}$

#### (Isotonic)- $\pi^*$

 Isotonicity in experts for an unknown permutation π\*

# (Bi-isotonic)-( $\pi^*, \sigma^*$ )

- Isotonicity in experts for an unknown permutation π\*
- Isotonicity in questions for an unknown permutation σ\*

- Isotonicity in experts for an unknown permutation π\*
- ▶ Isotonicity in questions:
  M.k ≤ M.(k+1)

#### (Isotonic)- $\pi^*$

 Isotonicity in experts for an unknown permutation π\*

# (Bi-isotonic)-( $\pi^*, \sigma^*$ )

- Isotonicity in experts for an unknown permutation π\*
- Isotonicity in questions for an unknown permutation σ\*

- Isotonicity in experts for an unknown permutation π\*
- Isotonicity in questions:  $M_{\cdot k} \leq M_{\cdot (k+1)}$ (known permutation  $\sigma^*$ )

### (Isotonic)- $\pi^*$

 Isotonicity in experts for an unknown permutation π\*

# (Bi-isotonic)- $(\pi^*, \sigma^*)$

- Isotonicity in experts for an unknown permutation π\*
- Isotonicity in questions for an unknown permutation σ\*

## (Bi-isotonic)- $\pi^*$

- Isotonicity in experts for an unknown permutation π\*
- Isotonicity in questions:  $M_{k} \leq M_{(k+1)}$ (known permutation  $\sigma^{*}$ )

Statistical difficulty:

(Isotonic)- $\pi^* \succ$  (Bi-isotonic)- $(\pi^*, \sigma^*) \succ$  (Bi-isotonic)- $\pi^*$