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Observation Model

We observe the correctness of answer of n experts to d questions.
If i ∈ [n] and k ∈ [d], expert i answers correctly to question k
with unknown probability Mik ∈ [0, 1]:

Yik = Bern(Mik) ∈ Rn×d .

There exists an unknown permutation π∗ such that M satisfies
either the isotonicity or bi-isotonicity constraints after sorting its
rows with π∗.

Aim: Find an estimator of π∗

10 questions

4 experts
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0 0 1 1 1 1 0 1 1 1
0 0 0 0 1 0 1 1 0 1
0 0 1 1 1 1 1 1 1 1

 Matrix Y

Parametric VS Non-Parametric Models

Parametric Models:

•Questions Equaly Difficult ⇝ Mik = ai ≈ [Dawid and Skene, 1979]

•Ability/Difficulty ⇝ Mik = ϕ(αi − βk) ≈ [Bradeley and Terry, 1952]

Non-Parametric Models:

• Isotonicity: M has Increasing Columns for an unknown permutation π∗ ≈ [3]

•Bi-Isotonicity: Isotonicity and M has Increasing Rows ≈ [4]

Isotonicity Constraints

Matrix Mπ∗ plotted by lines

• Increasing columns for an unknown permutation π∗: Mπ∗(i),k ≤ Mπ∗(i+1),k

•No constraint on the rows

Bi-Isotonicity Constraints

Matrix Mπ∗ plotted by lines

• Increasing columns for an unknown permutation π∗: Mπ∗(i),k ≤ Mπ∗(i+1),k

• Increasing rows: Mik ≤ Mi,k+1

MiniMax Permutation

Risk

In both models, we introduce the follow-
ing permutation loss for any estimator
π̂:

l(π̂, π∗,M) = ∥Mπ̂ −Mπ∗∥2F ,

and the associated minimax permuta-
tion risk:

R∗
perm = inf

π̂
sup
π∗,M

E∥Mπ̂ −Mπ∗∥2F .

Carpentier, Pilliat, Verzelen

Assume we are in the isotonic or bi-isotonic model and that we have a polylogarithmic
number of samples. There exists an estimator π̂ computable in polynomial time achieving
the minimax permutation risk up to polylogarithms:

sup
π∗,M

∥Mπ̂ −Mπ∗∥2F ≲ R∗
perm .

Moreover, we give the minimax risks for permutation and estimation, in both models, for
any n, d:

[1] Isotonic Model:

n ≲ d3/2 d3/2 ≲ n

R∗
perm n2/3

√
d n

R∗
est n1/3d n

[2] Bi-Isotonic Model:

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

R∗
perm nd1/6 n3/4d1/4 n

R∗
est nd1/3

√
nd n

MiniMax Estimation

Risk

We can also introduce the minimax esti-
mation risk for any estimator M̂ of M :

R∗
est = inf

M̂
sup
π∗,M

E∥M̂ −M∥2F .

Aminimax estimator π̂ can be combined
with an isotonic or bi-isotonic regression
to obtain an estimator M̂ achievingR∗

est

General Idea: Non-Oblivious Hierarchical Clustering

Iteratively trisect any set G of rows of M in (O,P, I) such that with high probability, all
the experts in O are below all the experts in I . On the above pictures, a useful information
to trisect G(0) is that it is sandwiched between some sets of rows that have already been
classified as above or below G(0).

Worst-Case Scenario in the Bi-Isotonic Model
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

0 −1 −1 0 0 −1 0 0
0 1 1 0 0 1 0 0
0 1 1 0 0 1 0 0
0 −1 −1 0 0 −1 0 0
0 −1 −1 0 0 −1 0 0
0 1 1 0 0 1 0 0



A worst case scenario for a given set G(0) is when it contains two types of rows, that
are either in a set L or in a set U . The Rank 1 Matrix on the right corresponds to
the left picture after a local aggregation of columns. The positive (resp. negative) lines
correspond to rows in U (resp. in L), and the zero columns correspond to areas where all
the rows of M are equal. This worst case leads to the idea of averaging over local areas
around detectable variations of the rows and of using PCA to compute clusters with the
first left singular vector.
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